
Heterogeneous Processing-in-Memory
enabled Manycore Systems for Deep Learning

Biresh Joardar @
University of Houston

Jana Doppa @
Washington State University

Tutorial at Embedded Systems Week (ESWEEK), 2022

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

• Gigabytes of data, model
parameters

• Huge processing time
• Monetary cost

• Optimized hardware
necessary

Trend in deep learning models

Jan-18 Feb-19 Mar-20 Jan-21

• Common Hardware platforms for
Deep learning applications:

• CPU + External GPU
• Cloud Services e.g., Microsoft Azure

• CPUs/GPUs are not optimized for
Deep Learning tasks

• Bandwidth bottleneck
• Sub-optimal performance, energy

Deep learning on GPUs/CPUs

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DL growth vs Hardware growth

• Transformer models have been
growing at 750x every 2 years

• Number of transistors only
doubles every 2 years

• Gap between what is needed
vs what is available

• Slows innovation in ML

• Computation is super fast!
• End of Moore’s law
• Data movement is a huge

bottleneck
• The “Memory wall” problem

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

How to design better hardware

• ML models are getting
larger and larger

• Not sustainable and
environment friendly

• Develop better hardware to
continue innovation in ML

https://www.forbes.com/sites/glenngow/2020/08/21/environmental-sustainability-and-ai/?sh=e8de737db3a2

Environmental impact of AI

• Computation is super fast!
• Communication and memory access is the new bottleneck

5 October 2022 9Duke University

Computation Communication Memory/
Storage

Communication bottleneck

Some latest AI accelerators

https://www.techspot.com/news/81520-cerebras-unveils-first-trillion-transistor-chip-world-largest.html

• 3D enables heterogeneous
integration

• 3D architectures solve the
communication bottleneck
• High throughput
• Low latency
• Energy efficient

Envisioned future architecture

Apple M1 heterogeneous design

• Heterogeneous architectures
are used commercially

• Apple M1 has two types of
CPUs, GPUs, Neural engine

• High performance and energy
efficiency

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

inputs

x3

x2

w1x1

w2

w3

y

How to read this graphical representation

𝑦 = 𝜎 𝑊𝑥 , where 𝜑 is a non-linear
function called as activation function

weights

output

These units are much more powerful if we
stack many of them together! This stacked
network will be called a neural network!

Let’s start with the simplest unit!

Neural Network

Our
basic
unit

ReLU is a good
default choice

Common activation functions

Differentiable Programming Paradigm

• The user writes a differentiable program
• Use training data to optimize the parameters of this program so that

the program behaves as desired

Different ways to think about a neural network

Automatic Feature Learning

Layers learning
representative
features

Classifier layer on
top of learned
features

Different ways to think about a neural network

Function Approximator

x f y

f (x) = σ[W2 [σ(W1x + b1)]+ b2]

Levels of abstraction

Now, we have our model!
How do we train it?
Backpropagation!

MODEL
(weights)

PredictionUpdate Model
(weights)

Loss Function

We already
have our model

For e.g., least squares
loss, cross entropy loss, …

General (Supervised) ML Training Loop

• Generic algorithm to minimize a continuous objective function.
• In our case, loss function is the objective.
• Key idea: take steps proportional to the negative of the gradient at

the current point.
• Key equation:

• wt+1 = wt – η . ∇L(wt), where η is the learning rate

• Essentially, the main thing we require now
• gradient of the loss function with respect to the weights (∇L(wt))

https://bit.ly/2oKFTsM

Aside: Gradient Descent

https://bit.ly/2oKFTsM

How do we compute the
gradients?

• Efficient algorithm to compute gradients w.r.t weights
•Key Idea: Chain Rule of Calculus
•Central algorithm for training neural networks
• Let’s consider a simple example to illustrate the idea

https://bit.ly/2FS5wPF

Backpropagation

https://bit.ly/2FS5wPF

• 𝑦 = 𝜎 𝑤!"ℎ" +𝑤!#ℎ# where ℎ" = 𝜎(𝑤""𝑥" +𝑤#"𝑥#) and
ℎ# = 𝜎(𝑤"#𝑥" +𝑤##𝑥#)

h1

h2

input

w31

y

x1

x2
w32

w11

w12 w21

w22

Backprop example on 1 hidden layer neural network

• 𝑤""
$%" = 𝑤""

$ − 𝜂 &'
&(!!

h1

h2

y

input

w31

L

x1

x2
w32

w11

w12 w21

w22

Compute the derivative of L
with this weight

Backpropagation Example

• 𝑤""
$%" = 𝑤""

$ − 𝜂 &'
&(!!

h1

h2

y

input

w31

𝜕𝐿
𝜕𝑦

x1

x2
w32

w11

w12 w21

w22

Backpropagation Example

• 𝑤""
$%" = 𝑤""

$ − 𝜂 &'
&(!!

h1

h2

y

input

!"
!#!"

= !"
!$

. !$
!#!"x1

x2
w32

w11

w12 w21

w22

𝜕𝐿
𝜕𝑦

Backpropagation Example

• 𝑤""
$%" = 𝑤""

$ − 𝜂 &'
&(!!

h1

h2

y

input

𝜕𝐿
𝜕𝑤!"

x1

x2
w32

w11

w12 w21

w22

𝜕𝐿
𝜕𝑦

!"
!%"

= !"
!$

. !$
!%"

Backpropagation Example

• 𝑤""
$%" = 𝑤""

$ − 𝜂 &'
&(!!

h1

h2

y

input

𝜕𝐿
𝜕𝑤!"

x1

x2
w32

w12 w21

w22

𝜕𝐿
𝜕𝑦

𝜕𝐿
𝜕ℎ"

!"
!#""

= !"
!%"

. !%"
!#""

Backpropagation Example

• Same procedure can be applied to other weights
• Overall Training of Neural Networks:
• Till convergence (for e.g. when validation loss stops decreasing),

repeat:
• Forward Pass - Compute the predictions
• Compute training loss
• Backward Pass – Compute the gradients
• Update the weights with gradient descent equation

Overall Training

Are you wondering that you need to calculate all
these gradients by hand for each weight?

Answer is No!
Automatic Differentiation is the solution

• General way of taking a program which computes a value,
and automatically constructing a procedure for computing
gradients of that value.
• For e.g. gradients of loss function.

• Implementing backprop by hand is like programming in
assembly language.
• You’ll probably never do it, but it’s important for having a mental

model of how everything works
•Most of the deep learning libraries (PyTorch, TensorFlow)

have this functionality as default

Auto differentiation

Roger Grosse and Jimmy Ba notes

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Auto differentiation

Roger Grosse and Jimmy Ba notes

You can create all kinds of
functions by combining
these primitive operations

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Convolutional Neural Networks

CNNs are everywhere

CNNs are everywhere

This is what a CNN looks like

We will
talk about
each layer
in detail
shortly!

Architecture for vision based tasks

• What kind of assumptions do you think we need?
• The same sorts of features that are useful in analyzing one part of the

image will probably be useful for analyzing other parts as well.
• E.g., edges, corners, contours, object parts, …
• Let’s discuss a new layer: Convolution layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Example of Convolution Operation

Example of Convolution Operation

Example of Convolution Operation

Example of Convolution Operation

Example of Convolution Operation

Convolution Layer

weights are shared for
a single activation map

Convolution Layer

Convolution Layer

(also called as
channels)

ConvNet

Pooling Layer

One example of Pooling

Convolutional Neural Network (CNN)

Visualizing what CNN learns

Increasingly complex
features at each level
Starting from generic
ones (lines, edges,
colours etc.) at lower
layers to specific ones
at the higher layers!

Visualizing what CNN learns

Visualizing what CNN learns

Visualizing what CNN learns

Sequence based Neural Networks

Applications of Sequence Models

Applications of Sequence Models

Sentiment
Classification

Applications of Sequence Models

Machine
Translation

Basic (Vanilla) RNN architecture

Basic RNN architecture

Basic RNN architecture

Backpropagation through time (BPTT)

Forward through entire sequence to compute loss, then
backward through entire sequence to compute gradienthttps://bit.ly/35jh0bg

https://bit.ly/35jh0bg

• Vanilla RNNs have almost fallen out of favor because of
multiple issues with their training procedure
• For e.g. Vanishing Gradients

•Multiple advanced techniques overcome these issues in
different forms. Some of them are:
• LSTMs, GRUs
• Attention models

Advanced Sequence Models

https://www.youtube.com/watch?v=3Hn_hEPtciQ
https://www.youtube.com/watch?v=IEbBIpP4c9E&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=11&t=0s
https://www.youtube.com/watch?v=PjMcA_NlB_8&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=10&t=0s

Graph Neural Networks

How about more complex data

Graph Neural Networks (Motivation)

Complex graph
data

Graph Neural Networks (Example Problem)

Graph Neural Networks Formulation

More resouces: https://www.youtube.com/watch?v=v3jZRkvIOIM, https://tkipf.github.io/graph-convolutional-networks/

https://www.youtube.com/watch?v=v3jZRkvIOIM
https://tkipf.github.io/graph-convolutional-networks/

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

In-memory computing

Conventional computing In-memory computing

• Memory units include simple
compute units

• Computations are done inside
the memory

• Cost of moving data is
reduced

Comparing different memory technologies

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381–386.

• In-memory computing
requires computing near or
inside memory

• SRAM is area inefficient
• DRAM is volatile
• ReRAM is a good candidate

Non-volatile memory use

• PCM, STT-RAM, ReRAM have been used for in-memory computing
• We will focus ReRAMs for this presentation

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381–386.

E1

E2

E1

E2

Gap lengthOxygen
vacancy

• Resistance of ReRAM cell modulated by voltage
• Oxygen vacancies form a bridge between the two electrodes

• ON state

• No bridge = OFF state

ReRAM cell

C11

C12 C22

C21 V1

V2

I1

I2

ReRAM for Matrix vector multiplication

• Resistors are natural multipliers (𝑉 = 𝐼 ∗ 𝑅)
• Crossbar structure enables high-throughput matrix-vector

multiplications
• Perfect for ML applications

Convolution layer CNN

• Convolution and Fully-connect layers are dominated by
matrix-vector multiplications

• Can be implemented using ReRAM crossbars

ReRAM crossbar

• ReRAM crossbar includes multiple peripherals, e.g., ADC, DAC, etc.

Mapping weights to ReRAMs

• Mapping weights of
convolution layer to ReRAM
crossbar

• Input images are applied as
input voltage to wordlines

• Output is obtained at the
bitlines

W = 2.25 à 0000 0010 0100 0000

0000 0010 00000100

Shift & Add

Input

Output
(Y)

y1 y2 y3 y4

𝑌 = &
&'(

)

16)*& ∗ 𝑦&

Mapping weights to ReRAMs

• All bits of a weight are not
mapped to same cell due to
ADC size concerns

• Bits are distributed across
multiple cells

• Output is obtained by
accumulating partial outputs

ReRAM architecture

• Multiple ReRAM crossbars
necessary for large CNNs

• Crossbars are grouped in to
IMAs, multiple IMAs grouped
in to tiles

• Peripherals include ADC, DAC,
on-chip memory, etc.

Example ReRAM architecture

• ADC and Router introduce the
most power and area

• Crossbar itself is area and
power efficient

• ISAAC architecture has ~16k
crossbars of shape 128*128

A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars," in ISCA, 2016, pp. 14-26

ReRAM execution pipeline

• Images are processed one
after another in a pipeline

• Different from GPU/CPU
execution

• Reduces number of write
operations but requires
more crossbars to
implement

Image-1

Image-1

Image-1

Image-1

Image-1

Image-1

Image-2

Image-2

Image-2

Image-2

Image-2

Image-3

Image-4

Image-5

Image-6

Time

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6

CNN layers

Performance of ReRAM accelerators

• Up to 100X speed-up achievable compared to GPU
• Area and power efficient as well

Why manycore ReRAM?

• Millions of weights in CNNs
• Pipelining requires many

crossbars to implement
• Crossbars grouped into

tiles (cores)
• Hence, ‘manycore’
• 3D allows for more cores

What about BN?

• Not every CNN layer has
matrix multiplications

• BN layers are needed for.
Training deep CNNs

• Division, square-root
needed for BN

• ReRAMs not good for these

Role of BN layers in CNN training

0
10
20
30
40
50
60
70
80
90

100
N

o-
BN

Al
l-B

N

N
o-

BN

Al
l-B

N

N
o-

BN

Al
l-B

N

N
o-

BN

Al
l-B

N

VGG11 VGG16 VGG19 Res18

Ac
cu

ra
cy

 (%
) • Xavier initialization can

replace BN layers
• However, they are not

reliable always
• Sensitive to hyper-

parameter choice

Heterogeneous ReRAM-based system

• Challenges with implementing
BN layers
• Full-precision
• Division and square-root
• Not suited for ReRAMs

• Solution: Heterogeneous
architecture with GPU+ReRAM

• GPUs can do BN

Mapping CNN training to heterogeneous PIM

• Convolution and Fully
connected layers on ReRAMs

• BN layers on GPUs
• 3D integration to allow fast

data exchange

Performance of heterogeneous PIM

• Without BN, training of VGG11
with Cifar-10 failed

• With BN and heterogeneous
PIM, accuracy is near-GPU

0

5

10

15

20

Lenet VGG-11 VGG-19 ResNet-18

Sp
ee

d-
up

AccuReD GPU

• Without BN, training of VGG11
with Cifar-10 failed

• With BN and heterogeneous
PIM, accuracy is near-GPU

GNN training

• DL on graphs
• Useful in

recommendation
systems, Drug
discovery, etc.

GNN training on ReRAMs

• GNN layers also rely on matrix-vector multiplications
• GNNs usually not deep => BN layers not needed
• Can be implemented using ReRAMs

Storing sparse data on ReRAMs

• Graph adjacency matrices are very sparse
• >90% data is zero, multiplications with zero is redundant
• Storing on large ReRAM crossbars is wasteful

Using smaller crossbars

• Smaller crossbars are better for storing sparse data
• Some crossbars will be storing all zeros
• We do not need them at all => Area and power savings

Heterogeneous PIM for GNN training

• GNNs have both dense data
(weights) and sparse data
(adjacency matrices)

• Dense weights => Large
crossbars

• Sparse data => Small crossbars
• More efficient storage

Power-performance-area trade-offs

• Larger crossbars are inefficient
for storing sparse data

• However, they are more area
and power efficient

• Peripheral area >> Crossbar
area

• Good design should reduce
peripherals since crossbar area
is relatively small

Homogeneous PIM for GNNs

• ReRAM architecture with large
crossbars only

• Both dense and sparse data
stored on large crossbars

• Lower area and power overall
• 3D NoC for efficient

communication

Message passing in hardware

• GNNs utilize neighbor information for predictions
• 𝑦!"##$%& = 𝑓(𝑥!"##$%&, 𝑦%$()*+,#)

• Repeat for every GNN layer and iteration
• Message passing => increased communication in the computing system

Many-to-few communication in ReRAMs

• Each GNN layer requires vertex (V)
and edge-centric (E) computations

• Each V computation is associated
with unique weights

• E computations require graph
adjacency matrix (which is unique)

• Communication between multiple
V’s to one E => Many-to-few

Reducing communication using DropLayer

• Dropout is a regularization
technique to improve
accuracy

• DropLayer = Dropout +
DropEdge

• Improved performance using
DropLayer by reducing traffic

DropLayer performance

• Dropout improves accuracy
• Also reduces communication by

‘dropping’ data
• Improves execution time

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

Reliability of ReRAMs

• ReRAMs have reliability issues
• Manufacturing defects, Process

variations, write variance, etc.
• Not useful for real use

Precision issue in ReRAMs

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40 45 50

Ac
cu

ra
cy

Epoch

Full-precision

Low-precision

• ReRAMs use 16-bit fixed
point precision

• GPUs use 32-bit floating-
point precision

• Accuracy loss at low
precision training

Different types of SAFs

• Different types of faults in ReRAMs
• Some are permanent, some can be short-lived
• Some appear during use

Effect of faults

0%

20%

40%

60%

80%

100%

Lenet Alex VGG11 VGG16 VGG19 Res18

Ac
cu

ra
cy

Ideal Fault-0.1 Fault-2
• Faults cause accuracy loss
• Some CNNs may fail to train

completely due to faults
• Faults affect both weights

and gradients

Thermal noise

• Resistance changes with resistance
• Thermal noise can affect stored value
• Accuracy loss due to temperature

Accuracy loss due to noise

• Accuracy drop due to noise
• Higher accuracy loss at higher frequency

Write endurance of ReRAMs

• Repeated writes can damage
ReRAM cells

• Cells stop behaving as usual
• CNN training involves many

weight updates => writes

GNN training in presence of faults

70%
75%
80%
85%
90%
95%

100%

Fault-1 Fault-2 Fault-5

Ac
cu

ra
cy

Ideal Faulty
• Faults are an issue for GNNs

as well
• Accuracy drop at higher fault

densities
• Must be addressed

Introduction

120

Robust	and	Efficient	ReRAM-based	System

High	Inferencing	Accuracy	under	Stochastic	Noise

Area-,	Energy-,	Latency-efficient	Designs	

Multi-objective	Optimization

Low-cost	Optimization	Algorithm

High-quality	Pareto-front	Designs

DNN Inferencing Process on ReRAM Crossbars

121

DNN	
Parameters

Hardware	
Configurations

Stochastic	
Noise

Design	
Objectives

In	need	of	hardware-aware	training	method

Challenges in Robust ReRAM design

122

Figure	1	from	[He,	Zhezhi,	et	al.	2019]

(1)	High-amplitude	noise	
due	to	frequency	and	
temperature.

(2)	Aggregated	noise	due	to	
the	combination	of	
stochastic	noise.	

(3)Reduced	noise	margin	
due	to	high-resolution	cell.

ReSNA Methodology

123

(1)	Analysis	the	distribution	
of	noise	under	frequency	
and	temperature	setting.

(2)	Include	the	relative	
conductance	change	to	the	
ReRAM	cell	during	training.

(3)	Apply	the	hardware	
settings	to	the	quantization	
step.

ReSNA:	ReRAM-based	Stochastic-Noise-Aware	Training

ReSNA Results

124

üValidates	for	the	combination	of	stochastic	noise.
üWorks	for	various	temperature	and	frequency	setting,	as	well	as	the	
high-resolution	(8-bit)	cell	setting.

üShows	promising	accuracy	improvement	under	the	1000MHz	and	
400K.

ReRAM	inferencing	accuracy	under	various	temperature	and	frequency	settings.	
8-bit	cell	resolution,	64×64	crossbars.	ResNet20	on	the	CIFAR-10	dataset.

Robust and Efficient ReRAM-based System

125

DNN	
Parameters

Hardware	
Configurations

Design	
Objectives

ReSNA Training

Q1:	The	number	of	available	choices	
is	a	combination	problem.

Q2:	Full	hardware	training	process	take	
non-negligible	computation	cost.

In	need	of	an	optimization	strategy

Design Trade-offs Considering Different Objectives

126

Inferencing	Accuracy Area	Overhead

Execution	Time Energy	Comsumption

Observation:	a	global	optimal	
design	configuration	is	not	
achievable.

Goal:	Find	design	
configurations	that	lie	in	
the	Pareto	set	with	the	
minimal	cost.

*
*

*
*

MOO Algorithms for Hardware Design

127

Objective	functions	for	
ReRAM	design.

$:	the	objective	
function	is	cheap	to	
evaluate
e.g.:	NSGA-II,	
AMOSA

$$$:	the	objective	
function	is	
expensive	to	
evaluate
e.g.:	Baysian
Optimization,	Max	-
entropy	Search

MOO Steps and Goal

128

DNN	
Parameters

Hardware	
Configurations

Design	
ObjectivesReSNA Training

Find	Pareto-
Optimal	ReRAM-
based	System	

with	Minimal	Cost

MOO	
Input

MOO	
Objectives

Evaluation	
Process

Next	Candidate	
MOO	Input

?

CF-MESMO: Continuous Fidelity
Definition for continuous fidelity :
ØVary the number of training

epochs in ReSNA to trade-off
computation cost and accuracy
of objective function
evaluations.

129

Computation	cost

Training	epoch	for	ReSNA (Fidelity)

MOO	Input,	
Fidelity	
Selection

MOO	
Objectives

Evaluation	
Process

Next	Candidate	
MOO	Input,	Fidelity	

Selection
Computation	cost	for	one	
evaluation	process	can	be	
controlled	by	fidelity	selection.

CF-MESMO: Max-Entropy Search

130

Surrogate	model:	Gaussian	Processes

Sample	the	Pareto	Front

Calculate	the	information	gain	per	
unit	cost

Select	next	candidate	ReRAM	design	
and	fidelity	pair

• CF-MESMO vs. NSGA-II and random search. • CF-MESMO vs MESMO.

131

Using CF-MESMO to Optimize ReRAM Crossbars

ü CF-MESMO	can	achieve	a	higher-quality	Pareto	
optimal	set	for	the	same	total	computation	
cost	for	ReRAM	design	evaluation;	

ü Max-entropy	based	search	is	highly	efficient	
in	terms	of	achieving	high-quality	Pareto	
Optimal.

ü The	continuous-fidelity	setting	in	CF-MESMO	
can	guarantee	higher	quality	Pareto	front	with	
lower	computation	cost	when	compared	to	the	
single	maximum	fidelity	algorithm	MESMO.	

ü Fidelity	setting	in	CF-MESMO	makes	the	next	
candidate	selection	is	based	on	the	
information	gain	per	unit	cost.	

Pareto Optimal and Pareto Set

132

üAll	the	points	shown	on	the	figure	lies	on	the	Pareto	front.
üWe	can	avoid	high-latency	or	high-energy	design	based	on	our	criteria	
and	budget.

üFrom	the	Pareto	set,	we	can	see	that	high-cell	resolution	setting	or	high-
frequency	setting	appears	in	the	Pareto	front	due	to	the	ReSNAmethod.

The	number	near	
the	datapoint	refers	
to	the	optimization	
iteration	index.

More Results and Analysis

133

üThere	is	a	large	overlap	among	the	various	
clusters	within	the	same	network	class.

ü In	designing	ReRAM-based	accelerators,	we	
should	first	set	the	expected	inferencing	
accuracy	and	hardware	efficiency	target	and	
then	choose	the	network	using	the	Pareto	
front.

ü The	distribution	of	Pareto	
front	for	VGGs	shows	a	
different	pattern.

ü More	details	are	discussed	in	
our	paper.

Summary: BO to configure ReRAM designs

134

ReSNA Training	Method

Build	Robust	and	Efficient	
ReRAM-based	System

CF-MESMO	Method

Efficiently	Find	Pareto-
Optimal	Designs

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

Existing mitigation methods

• Error correction codes, Use redundant hardware,
retraining, etc.

• High area and power cost

Thermal noise

• Resistance changes with resistance
• Thermal noise can affect stored value
• Accuracy loss due to temperature

BN layers to reduce noise effect

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40 45 50
Ac

cu
ra

cy

Epoch

V-ideal V-all V-alt V-three V-none

• Noise results in exploding weights and gradients
• Normalization layers can help reduce impact of noise
• Near-ideal accuracy even at 1GHZ, 100℃ (worst case) when normalization is used

V-all: All layers are followed by normalization, V-alt: every alternate layer has normalization
V-three: every third layer has normalization, V-none: No layer has normalization

Different types of SAFs

• Different types of faults in ReRAMs
• Some are permanent, some can be short-lived
• Some appear during use

Weight clipping

𝑤 = / 𝑤 , 𝑖𝑓 𝑤 < 𝜖
𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Clipping:

• Weight clipping acts as regularizer and reduces the sensitivity to
various types of distortions

• Clipping can prevent large weights
• Helps CNN training

0

0.1

0.2

0.3

0.4

1 5 10 15 20 25 30 35 40 45 50

CN
N

 w
ei

gh
ts

(A

bs
ol

ut
e

va
lu

es
)

Iteration

Max-Conv2 Avg-Conv2

Weight clipping for CNN

0%

20%

40%

60%

80%

100%

Lenet Alex VGG11 VGG16 VGG19 Res18
Ac

cu
ra

cy

Ideal Faulty Weight clipping

• Weight clipping can restore lost accuracy
• Prevent exploding gradients and activations
• Enables stable training

Weight clipping for GNNs

70%
75%
80%
85%
90%
95%

100%

Fault-1 Fault-2 Fault-5
Ac

cu
ra

cy

Ideal Faulty Weight clipping

• Helps GNNs train in presence of faults
• Near-ideal accuracy

• Hardware implementation
• Mux and comparator needed
• Low overhead implementation

Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions

Summary and Promising Directions

• ReRAMs have shown great success in accelerating DL workloads
• Significant progress on improving the reliability challenges of ReRAMs

• Much work needs to be done for ReRAM based systems for GNNs
• Exploring ReRAM based manycore systems for transformer architectures
• Exploring alternative non-volatile memories (e.g., Ferro-electric)

• Understanding the power, performance, and reliability trade-offs w.r.t ReRAMs

