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• Gigabytes of data, model 
parameters

• Huge processing time
• Monetary cost

• Optimized hardware 
necessary

Trend in deep learning models

Jan-18 Feb-19 Mar-20 Jan-21



• Common Hardware platforms for 
Deep learning applications:

• CPU + External GPU
• Cloud Services e.g., Microsoft Azure

• CPUs/GPUs are not optimized for 
Deep Learning tasks

• Bandwidth bottleneck
• Sub-optimal performance, energy

Deep learning on GPUs/CPUs



https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DL growth vs Hardware growth

• Transformer models have been 
growing at 750x every 2 years

• Number of transistors only 
doubles every 2 years

• Gap between what is needed 
vs what is available

• Slows innovation in ML



• Computation is super fast!
• End of Moore’s law
• Data movement is a huge 

bottleneck
• The “Memory wall” problem

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

How to design better hardware



• ML models are getting 
larger and larger

• Not sustainable and 
environment friendly

• Develop better hardware to 
continue innovation in ML

https://www.forbes.com/sites/glenngow/2020/08/21/environmental-sustainability-and-ai/?sh=e8de737db3a2

Environmental impact of AI



• Computation is super fast!
• Communication and memory access is the new bottleneck

5 October 2022 9Duke University

Computation Communication Memory/
Storage

Communication bottleneck



Some latest AI accelerators

https://www.techspot.com/news/81520-cerebras-unveils-first-trillion-transistor-chip-world-largest.html



• 3D enables heterogeneous 
integration

• 3D architectures solve the 
communication bottleneck
• High throughput
• Low latency
• Energy efficient

Envisioned future architecture



Apple M1 heterogeneous design

• Heterogeneous architectures 
are used commercially

• Apple M1 has two types of 
CPUs, GPUs, Neural engine

• High performance and energy 
efficiency
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How to read this graphical representation

𝑦 = 𝜎 𝑊𝑥 , where 𝜑 is a non-linear
function called as activation function

weights

output

These units are much more powerful if we 
stack many of them together! This stacked 
network will be called a neural network!

Let’s start with the simplest unit!



Neural Network

Our 
basic 
unit



ReLU is a good 
default choice

Common activation functions



Differentiable Programming Paradigm

• The user writes a differentiable program
• Use training data to optimize the parameters of this program so that 

the program behaves as desired



Different ways to think about a neural network

Automatic Feature Learning

Layers learning 
representative 
features

Classifier layer on
top of learned 
features



Different ways to think about a neural network

Function Approximator

x f y

f (x) = σ[W2 [σ(W1x + b1)]+ b2]



Levels of abstraction



Now, we have our model!
How do we train it?
Backpropagation!



MODEL
(weights)

PredictionUpdate Model
(weights)

Loss Function

We already 
have our model

For e.g., least squares 
loss, cross entropy loss, …

General (Supervised) ML Training Loop



• Generic algorithm to minimize a continuous objective function.
• In our case, loss function is the objective.
• Key idea: take steps proportional to the negative of the gradient at 

the current point.
• Key equation:

• wt+1 = wt – η . ∇L(wt), where η is the learning rate

• Essentially, the main thing we require now
• gradient of the loss function with respect to the weights (∇L(wt))

https://bit.ly/2oKFTsM

Aside: Gradient Descent

https://bit.ly/2oKFTsM


How do we compute the 
gradients?



• Efficient algorithm to compute gradients w.r.t weights
•Key Idea: Chain Rule of Calculus
•Central algorithm for training neural networks
• Let’s consider a simple example to illustrate the idea

https://bit.ly/2FS5wPF

Backpropagation

https://bit.ly/2FS5wPF


• 𝑦 = 𝜎 𝑤!"ℎ" +𝑤!#ℎ# where ℎ" = 𝜎(𝑤""𝑥" +𝑤#"𝑥#) and 
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Backprop example on 1 hidden layer neural network
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• Same procedure can be applied to other weights
• Overall Training of Neural Networks:
• Till convergence (for e.g. when validation loss stops decreasing), 

repeat:
• Forward Pass - Compute the predictions
• Compute training loss
• Backward Pass – Compute the gradients
• Update the weights with gradient descent equation

Overall Training



Are you wondering that you need to calculate all 
these gradients by hand for each weight?

Answer is No!
Automatic Differentiation is the solution



• General way of taking a program which computes a value, 
and automatically constructing a procedure for computing 
gradients of that value. 
• For e.g. gradients of loss function.

• Implementing backprop by hand is like programming in 
assembly language. 
• You’ll probably never do it, but it’s important for having a mental 

model of how everything works
•Most of the deep learning libraries (PyTorch, TensorFlow) 

have this functionality as default

Auto differentiation

Roger Grosse and Jimmy Ba notes

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf


Auto differentiation

Roger Grosse and Jimmy Ba notes

You can create all kinds of 
functions by combining 
these primitive operations

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf


Convolutional Neural Networks



CNNs are everywhere



CNNs are everywhere



This is what a CNN looks like

We will 
talk about 
each layer 
in detail 
shortly!



Architecture for vision based tasks

• What kind of assumptions do you think we need?
• The same sorts of features that are useful in analyzing one part of the 

image will probably be useful for analyzing other parts as well. 
• E.g., edges, corners, contours, object parts, …
• Let’s discuss a new layer: Convolution layer



Convolution Layer



Convolution Layer



Convolution Layer



Convolution Layer



Example of Convolution Operation
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Example of Convolution Operation



Example of Convolution Operation



Convolution Layer

weights are shared for 
a single activation map



Convolution Layer



Convolution Layer

(also called as 
channels)



ConvNet



Pooling Layer



One example of Pooling



Convolutional Neural Network (CNN)



Visualizing what CNN learns

Increasingly complex 
features at each level 
Starting from generic 
ones (lines, edges, 
colours etc.) at lower 
layers to specific ones 
at the higher layers!



Visualizing what CNN learns



Visualizing what CNN learns



Visualizing what CNN learns



Sequence based Neural Networks



Applications of Sequence Models



Applications of Sequence Models

Sentiment 
Classification



Applications of Sequence Models

Machine 
Translation













Basic (Vanilla) RNN architecture



Basic RNN architecture



Basic RNN architecture



Backpropagation through time (BPTT)

Forward through entire sequence to compute loss, then 
backward through entire sequence to compute gradienthttps://bit.ly/35jh0bg

https://bit.ly/35jh0bg


• Vanilla RNNs have almost fallen out of favor because of 
multiple issues with their training procedure
• For e.g. Vanishing Gradients

•Multiple advanced techniques overcome these issues in 
different forms. Some of them are:
• LSTMs, GRUs
• Attention models

Advanced Sequence Models

https://www.youtube.com/watch?v=3Hn_hEPtciQ
https://www.youtube.com/watch?v=IEbBIpP4c9E&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=11&t=0s
https://www.youtube.com/watch?v=PjMcA_NlB_8&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=10&t=0s


Graph Neural Networks

How about more complex data



Graph Neural Networks (Motivation)

Complex graph 
data



Graph Neural Networks (Example Problem)



Graph Neural Networks Formulation

More resouces: https://www.youtube.com/watch?v=v3jZRkvIOIM, https://tkipf.github.io/graph-convolutional-networks/

https://www.youtube.com/watch?v=v3jZRkvIOIM
https://tkipf.github.io/graph-convolutional-networks/
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In-memory computing

Conventional computing In-memory computing

• Memory units include simple 
compute units

• Computations are done inside 
the memory

• Cost of moving data is 
reduced



Comparing different memory technologies

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381–386. 

• In-memory computing 
requires computing near or 
inside memory

• SRAM is area inefficient
• DRAM is volatile
• ReRAM is a good candidate



Non-volatile memory use

• PCM, STT-RAM, ReRAM have been used for in-memory computing
• We will focus ReRAMs for this presentation

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381–386. 
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• Resistance of ReRAM cell modulated by voltage
• Oxygen vacancies form a bridge between the two electrodes

• ON state

• No bridge = OFF state

ReRAM cell
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ReRAM for Matrix vector multiplication

• Resistors are natural multipliers (𝑉 = 𝐼 ∗ 𝑅)
• Crossbar structure enables high-throughput matrix-vector 

multiplications
• Perfect for ML applications



Convolution layer CNN

• Convolution and Fully-connect layers are dominated by 
matrix-vector multiplications

• Can be implemented using ReRAM crossbars



ReRAM crossbar

• ReRAM crossbar includes multiple peripherals, e.g., ADC, DAC, etc.



Mapping weights to ReRAMs

• Mapping weights of 
convolution layer to ReRAM 
crossbar

• Input images are applied as 
input voltage to wordlines

• Output is obtained at the 
bitlines
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Mapping weights to ReRAMs

• All bits of a weight are not 
mapped to same cell due to 
ADC size concerns

• Bits are distributed across 
multiple cells 

• Output is obtained by 
accumulating partial outputs



ReRAM architecture

• Multiple ReRAM crossbars 
necessary for large CNNs

• Crossbars are grouped in to 
IMAs, multiple IMAs grouped 
in to tiles

• Peripherals include ADC, DAC, 
on-chip memory, etc.



Example ReRAM architecture

• ADC and Router introduce the 
most power and area

• Crossbar itself is area and 
power efficient

• ISAAC architecture has ~16k 
crossbars of shape 128*128

A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars," in ISCA, 2016, pp. 14-26 



ReRAM execution pipeline

• Images are processed one 
after another in a pipeline

• Different from GPU/CPU 
execution

• Reduces number of write 
operations but requires 
more crossbars to 
implement

Image-1

Image-1

Image-1

Image-1

Image-1

Image-1

Image-2

Image-2

Image-2

Image-2

Image-2

Image-3

Image-4
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Time

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6

CNN layers



Performance of ReRAM accelerators

• Up to 100X speed-up achievable compared to GPU
• Area and power efficient as well



Why manycore ReRAM?

• Millions of weights in CNNs
• Pipelining requires many 

crossbars to implement
• Crossbars grouped into 

tiles (cores)
• Hence, ‘manycore’
• 3D allows for more cores



What about BN?

• Not every CNN layer has 
matrix multiplications

• BN layers are needed for. 
Training deep CNNs

• Division, square-root 
needed for BN

• ReRAMs not good for these



Role of BN layers in CNN training
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) • Xavier initialization can 

replace BN layers
• However, they are not 

reliable always
• Sensitive to hyper-

parameter choice



Heterogeneous ReRAM-based system

• Challenges with implementing 
BN layers
• Full-precision
• Division and square-root
• Not suited for ReRAMs

• Solution: Heterogeneous 
architecture with GPU+ReRAM

• GPUs can do BN



Mapping CNN training to heterogeneous PIM

• Convolution and Fully 
connected layers on ReRAMs

• BN layers on GPUs
• 3D integration to allow fast 

data exchange



Performance of heterogeneous PIM

• Without BN, training of VGG11 
with Cifar-10 failed

• With BN and heterogeneous 
PIM, accuracy is near-GPU
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• Without BN, training of VGG11 
with Cifar-10 failed

• With BN and heterogeneous 
PIM, accuracy is near-GPU



GNN training

• DL on graphs
• Useful in 

recommendation 
systems, Drug 
discovery, etc.



GNN training on ReRAMs

• GNN layers also rely on matrix-vector multiplications
• GNNs usually not deep => BN layers not needed
• Can be implemented using ReRAMs



Storing sparse data on ReRAMs

• Graph adjacency matrices are very sparse
• >90% data is zero, multiplications with zero is redundant
• Storing on large ReRAM crossbars is wasteful



Using smaller crossbars

• Smaller crossbars are better for storing sparse data
• Some crossbars will be storing all zeros
• We do not need them at all => Area and power savings



Heterogeneous PIM for GNN training

• GNNs have both dense data 
(weights) and sparse data 
(adjacency matrices)

• Dense weights => Large 
crossbars

• Sparse data => Small crossbars
• More efficient storage



Power-performance-area trade-offs

• Larger crossbars are inefficient 
for storing sparse data

• However, they are more area 
and power efficient

• Peripheral area >> Crossbar 
area

• Good design should reduce 
peripherals since crossbar area 
is relatively small  



Homogeneous PIM for GNNs

• ReRAM architecture with large 
crossbars only

• Both dense and sparse data 
stored on large crossbars

• Lower area and power overall
• 3D NoC for efficient 

communication



Message passing in hardware

• GNNs utilize neighbor information for predictions
• 𝑦!"##$%& = 𝑓(𝑥!"##$%&, 𝑦%$()*+,#)

• Repeat for every GNN layer and iteration
• Message passing => increased communication in the computing system 



Many-to-few communication in ReRAMs

• Each GNN layer requires vertex (V) 
and edge-centric (E) computations

• Each V computation is associated 
with unique weights

• E computations require graph 
adjacency matrix (which is unique)

• Communication between multiple 
V’s to one E => Many-to-few 



Reducing communication using DropLayer

• Dropout is a regularization 
technique to improve 
accuracy

• DropLayer = Dropout + 
DropEdge

• Improved performance using 
DropLayer by reducing traffic



DropLayer performance

• Dropout improves accuracy
• Also reduces communication by 

‘dropping’ data
• Improves execution time



Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions



Reliability of ReRAMs

• ReRAMs have reliability issues
• Manufacturing defects, Process 

variations, write variance, etc.
• Not useful for real use



Precision issue in ReRAMs
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• ReRAMs use 16-bit fixed 
point precision

• GPUs use 32-bit floating-
point precision

• Accuracy loss at low 
precision training



Different types of SAFs

• Different types of faults in ReRAMs
• Some are permanent, some can be short-lived
• Some appear during use



Effect of faults
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• Faults cause accuracy loss
• Some CNNs may fail to train 

completely due to faults
• Faults affect both weights 

and gradients



Thermal noise

• Resistance changes with resistance
• Thermal noise can affect stored value
• Accuracy loss due to temperature



Accuracy loss due to noise

• Accuracy drop due to noise
• Higher accuracy loss at higher frequency



Write endurance of ReRAMs

• Repeated writes can damage 
ReRAM cells

• Cells stop behaving as usual
• CNN training involves many 

weight updates => writes



GNN training in presence of faults
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• Faults are an issue for GNNs 

as well
• Accuracy drop at higher fault 

densities
• Must be addressed



Introduction

120

Robust	and	Efficient	ReRAM-based	System

High	Inferencing	Accuracy	under	Stochastic	Noise

Area-,	Energy-,	Latency-efficient	Designs	

Multi-objective	Optimization

Low-cost	Optimization	Algorithm

High-quality	Pareto-front	Designs



DNN Inferencing Process on ReRAM Crossbars
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DNN	
Parameters

Hardware	
Configurations

Stochastic	
Noise

Design	
Objectives

In	need	of	hardware-aware	training	method



Challenges in Robust ReRAM design

122

Figure	1	from	[He,	Zhezhi,	et	al.	2019]

(1)	High-amplitude	noise	
due	to	frequency	and	
temperature.

(2)	Aggregated	noise	due	to	
the	combination	of	
stochastic	noise.	

(3)Reduced	noise	margin	
due	to	high-resolution	cell.



ReSNA Methodology

123

(1)	Analysis	the	distribution	
of	noise	under	frequency	
and	temperature	setting.

(2)	Include	the	relative	
conductance	change	to	the	
ReRAM	cell	during	training.

(3)	Apply	the	hardware	
settings	to	the	quantization	
step.

ReSNA:	ReRAM-based	Stochastic-Noise-Aware	Training



ReSNA Results 

124

üValidates	for	the	combination	of	stochastic	noise.
üWorks	for	various	temperature	and	frequency	setting,	as	well	as	the	
high-resolution	(8-bit)	cell	setting.

üShows	promising	accuracy	improvement	under	the	1000MHz	and	
400K.

ReRAM	inferencing	accuracy	under	various	temperature	and	frequency	settings.	
8-bit	cell	resolution,	64×64	crossbars.	ResNet20	on	the	CIFAR-10	dataset.



Robust and Efficient ReRAM-based System

125

DNN	
Parameters

Hardware	
Configurations

Design	
Objectives

ReSNA Training

Q1:	The	number	of	available	choices	
is	a	combination	problem.

Q2:	Full	hardware	training	process	take	
non-negligible	computation	cost.

In	need	of	an	optimization	strategy



Design Trade-offs Considering Different Objectives
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Inferencing	Accuracy Area	Overhead

Execution	Time Energy	Comsumption

Observation:	a	global	optimal	
design	configuration	is	not	
achievable.

Goal:	Find	design	
configurations	that	lie	in	
the	Pareto	set	with	the	
minimal	cost.

*
*

*
*



MOO Algorithms for Hardware Design
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Objective	functions	for	
ReRAM	design.

$:	the	objective	
function	is	cheap	to	
evaluate
e.g.:	NSGA-II,	
AMOSA

$$$:	the	objective	
function	is	
expensive	to	
evaluate
e.g.:	Baysian
Optimization,	Max	-
entropy	Search



MOO Steps and Goal
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DNN	
Parameters

Hardware	
Configurations

Design	
ObjectivesReSNA Training

Find	Pareto-
Optimal	ReRAM-
based	System	

with	Minimal	Cost

MOO	
Input

MOO	
Objectives

Evaluation	
Process

Next	Candidate	
MOO	Input

?



CF-MESMO: Continuous Fidelity
Definition for continuous fidelity :
ØVary the number of training 

epochs in ReSNA to trade-off 
computation cost and accuracy 
of objective function 
evaluations.

129

Computation	cost

Training	epoch	for	ReSNA (Fidelity)

MOO	Input,	
Fidelity	
Selection

MOO	
Objectives

Evaluation	
Process

Next	Candidate	
MOO	Input,	Fidelity	

Selection
Computation	cost	for	one	
evaluation	process	can	be	
controlled	by	fidelity	selection.



CF-MESMO: Max-Entropy Search
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Surrogate	model:	Gaussian	Processes

Sample	the	Pareto	Front

Calculate	the	information	gain	per	
unit	cost

Select	next	candidate	ReRAM	design	
and	fidelity	pair



• CF-MESMO vs. NSGA-II and random search. • CF-MESMO vs MESMO.

131

Using CF-MESMO to Optimize ReRAM Crossbars

ü CF-MESMO	can	achieve	a	higher-quality	Pareto	
optimal	set	for	the	same	total	computation	
cost	for	ReRAM	design	evaluation;	

ü Max-entropy	based	search	is	highly	efficient	
in	terms	of	achieving	high-quality	Pareto	
Optimal.

ü The	continuous-fidelity	setting	in	CF-MESMO	
can	guarantee	higher	quality	Pareto	front	with	
lower	computation	cost	when	compared	to	the	
single	maximum	fidelity	algorithm	MESMO.	

ü Fidelity	setting	in	CF-MESMO	makes	the	next	
candidate	selection	is	based	on	the	
information	gain	per	unit	cost.	



Pareto Optimal and Pareto Set

132

üAll	the	points	shown	on	the	figure	lies	on	the	Pareto	front.
üWe	can	avoid	high-latency	or	high-energy	design	based	on	our	criteria	
and	budget.

üFrom	the	Pareto	set,	we	can	see	that	high-cell	resolution	setting	or	high-
frequency	setting	appears	in	the	Pareto	front	due	to	the	ReSNAmethod.

The	number	near	
the	datapoint	refers	
to	the	optimization	
iteration	index.



More Results and Analysis
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üThere	is	a	large	overlap	among	the	various	
clusters	within	the	same	network	class.

ü In	designing	ReRAM-based	accelerators,	we	
should	first	set	the	expected	inferencing	
accuracy	and	hardware	efficiency	target	and	
then	choose	the	network	using	the	Pareto	
front.

ü The	distribution	of	Pareto	
front	for	VGGs	shows	a	
different	pattern.

ü More	details	are	discussed	in	
our	paper.
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ReSNA Training	Method

Build	Robust	and	Efficient	
ReRAM-based	System

CF-MESMO	Method

Efficiently	Find	Pareto-
Optimal	Designs



Outline of Tutorial

• Exponential growth of Deep Learning and Hardware Challenges
• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions



Existing mitigation methods

• Error correction codes, Use redundant hardware, 
retraining, etc.

• High area and power cost



Thermal noise

• Resistance changes with resistance
• Thermal noise can affect stored value
• Accuracy loss due to temperature



BN layers to reduce noise effect
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• Noise results in exploding weights and gradients
• Normalization layers can help reduce impact of noise
• Near-ideal accuracy even at 1GHZ, 100℃ (worst case) when normalization is used

V-all: All layers are followed by normalization, V-alt: every alternate layer has normalization
V-three: every third layer has normalization, V-none: No layer has normalization



Different types of SAFs

• Different types of faults in ReRAMs
• Some are permanent, some can be short-lived
• Some appear during use



Weight clipping

𝑤 = / 𝑤 , 𝑖𝑓 𝑤 < 𝜖
𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Clipping:

• Weight clipping acts as regularizer and reduces the sensitivity to 
various types of distortions 

• Clipping can prevent large weights
• Helps CNN training
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Weight clipping for CNN
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Ideal Faulty Weight clipping

• Weight clipping can restore lost accuracy
• Prevent exploding gradients and activations
• Enables stable training 



Weight clipping for GNNs
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Ideal Faulty Weight clipping

• Helps GNNs train in presence of faults 
• Near-ideal accuracy

• Hardware implementation
• Mux and comparator needed
• Low overhead implementation
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• Introduction to Deep Learning

• CNNs for images, RNNs for sequences, and GNNs for graph data

• ReRAM for Processing-in-Memory (PIM) to reduce data movement
• Heterogeneous GPU/ReRAM manycore systems for CNNs
• ReRAM based manycore systems for GNNs
• BO methods to configure ReRAM designs for improved Reliability
• Methods to improve Reliability of ReRAMs
• Summary and Promising Directions



Summary and Promising Directions

• ReRAMs have shown great success in accelerating DL workloads
• Significant progress on improving the reliability challenges of ReRAMs

• Much work needs to be done for ReRAM based systems for GNNs
• Exploring ReRAM based manycore systems for transformer architectures
• Exploring alternative non-volatile memories (e.g., Ferro-electric)

• Understanding the power, performance, and reliability trade-offs w.r.t ReRAMs


