Heterogeneous Processing-in-Memory
enabled Manycore Systems for Deep Learning

7= Lk v'i" \»‘/y%\j i ’l
Biresh Joardar @ Jana Doppa @
University of Houston Washington State University

EMBEDDED
SYSTEMS
WEEK

Tutorial at Embedded Systems Week (ESWEEK), 2022

Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions

Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions

Trend in deep learning models

G -
G ol
1t T -
“the hardware costs of running GPT-3 would be So “ i %
between $100,000 and 5150,000 without factoring $
in other costs (electricity, cooling, backup, etc.)” peta
- https://bdtechtalks.com/2020/09/21/gpt-3- k! ° 1
- economy-business-model ,&' G Iga bytes Of data) mOdel
o L
g g param eters
O * Huge processing time
Q sgutrontid ’
e * Monetary cost
g . * Optimized hardware
> necessary
Ai2 " .
. e B o, O

Jan-18 Feb-19 Mar-20 Jan-21

Deep learning on GPUs/CPUs

e Common Hardware platforms for
Deep learning applications:

 CPU + External GPU
* Cloud Services e.g., Microsoft Azure

* CPUs/GPUs are not optimized for
Deep Learning tasks

* Bandwidth bottleneck
* Sub-optimal performance, energy

DL growth vs

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models

ardware growth

le+093
E GPT-3
1 6}
le+08 -
: Transformer: 750x / 2 yrs MicroslPNLG
CV/NLP/Speech: 15x /2 yrs ®
| Moore's Law: 2x [/ 2 yrs Megatron LM
. 1le+07 Wav2Vec 2.0
g . XLNet @)
S ® e
- |
[T
< le+06- Xception BERT o
9] °® [®) MoCo ResNet50
>
g‘ h InceptionV3
S le+05 ® GPT-1
8\ E Transformer o
= i Seq2Seq ResNet ResNext €]
C le+04 o ® o
=] VGG DenseNet ELMo
o []
le+03+ AlexNet
E []
le+023
. T T l T T T l T T ' T r T T r T T l' T T [T T IT IT
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
YEAR

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

* Transformer models have been
growing at 750x every 2 years

* Number of transistors only
doubles every 2 years

* Gap between what is needed
vs what is available

* Slows innovation in ML

Normalized Scaling

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth

TPWV3 a100
10000003 HW FLOPS: 90000x / 20 yrs (3.1x/2yrs) 28
DRAM BW: 30x / 20 yrs (1.4x/2yrs) *
1 Inteconnect BW: 30x /20 yrs (1.4x/2yrs)
100000
10000
1000
100 ltanium 2 ¢ figR GDDR6X
E HBM @ GDDR6 ®
10 GDDRS5 - —
. @ - ® NVLink 3.0
1 R10000420 ° NVLink 1.0
14 e, PCle 3.0
E _ PCle 2.0
1 Pentium Il Xeon PCle 1.0a
0.1—§
0.01 |\III\\'II\!\|||\ll[ll\'Illl\||'|||r|l|'l||’||!r|||'\IIr!\\lll Il\l' \\llll\\lll\\Il\ll\\lllll\lllll
1996 1999 2002 2005 2008 2011 2014 2017 2020
YEAR

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

ow to design better hardware

e Computation is super fast!
* End of Moore’s law

* Data movement is a huge

bottleneck
 The “Memory wall” problem

Environmental impact of Al

800

700

600
—
wv
Q
- 500
o
o
o
o w0
(%]
S
7 300
2
@ 200
o

o 126.0
o =
. 3.2
1.0
0 20 r—————e—— _)
Air travel from Human life American life US. car Training an
New York City to (Avg. 1year) (Avg. 1year) manufacturing and Al model
San Francisco fuel consumption
(1 passenger) (Avg 1 lifetime)

https://www.forbes.com/sites/glenngow/2020/08/21/environmental-sustainability-and-ai/?sh=e8de737db3a2

ML models are getting
larger and larger

Not sustainable and
environment friendly

Develop better hardware to
continue innovation in ML

Communication bottleneck

Memory/

Computation je=——p Communication |[€=——p
Storage

|

16 bit Multiply 16 bit Access from 16bit Access
4K-word SRAM from DRAM

ENERGY PER OPERATION (p))

OPERATION

« Computation is super fast!
« Communication and memory access is the new bottleneck

5 October 2022 Duke University

Some latest Al accelerators

Largest Chip Ever Built

* 46,225 mm?silicon

1.2 trillion transistors

* 400,000 Al optimized cores

» 18 Gigabytes of On-chip Memory
* 9 PByte/s memory bandwidth

* 100 Pbit/s fabric bandwidth

* TSMC 16nm process

@erebras

https://www.techspot.com/news/81520-cerebras-unveils-first-trillion-transistor-chip-world-largest.html

Envisioned future architecture

ReRAM
* 3D enables heterogeneous rossbars %
(PIM)

integration
e 3D architectures solve the W
communication bottleneck "7 Wireless/Optical

/ interconnect

* High throughput

* Low latency
* Energy efficient

Apple M1 heterogeneous design

* Heterogeneous architectures
" are used commercially

DbRA e Apple M1 has two types of
s CPUs, GPUs, Neural engine

* High performance and energy
efficiency

d AER
S

Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions

Let’s start with the simplest unit!

How to read this graphical representation

y = o(Wx), where ¢ is a non-linear
function called as activation function

These units are much more powerful if we
stack many of them together! This stacked
network will be called a neural network!

Neural Network

input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net’, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Common activation functions
Sigmoid | Leaky RelLU
1 max(0.1x,)
O-(CU) — 14e— =

tanh

Maxout
tanh(z) max(wi = + by, w3 = + by)
ReLU ELU
max (0, x) . =0
: ae® —1) <0

\— RelLU is a good
default choice

Differentiable Programming Paradigm

* The user writes a differentiable program

e Use training data to optimize the parameters of this program so that
the program behaves as desired

Automatic Feature Learning

Classifier layer on
top of learned
//\\\TBfeatures

‘ output layer

hidden layer 1 hidden layer 2

\)
|

Layers learning
representative
features

%
X
N =
=\

soe
N

’r;‘tﬁ?«‘
0‘0}0

@

input layer

Function Approximator

/ / |

0
N %
2,
L

0
20
)‘\"’ tput layer
input layer ‘ ‘

hidden layer 1 hidden layer 2

X - f > y

;

f(x) = o[W, [o(Wx + b,)]+ b,]

When you design neural networks and machine learning algorithms, you'll
need to think at multiple levels of abstraction.

networks

layers

vectorized operations

‘ arithmetic operations |

J
<
\

AN
see
X
3

N\
Q

Va
:
()

hidden layer 1 hidden layer 2

Now, we have our model!
How do we train it?

Backpropagation!

General (Supervised) ML Training Loop

We already
have our model

> N\
- LK
24 AN
input layer
hidden layer 1 hidden layer 2

C J

For e.g., least squares
loss, cross entropy loss, ...

Aside: Gradient Descent

* Generic algorithm to minimize a continuous objective function.
* In our case, loss function is the objective.

» Key idea: take steps proportional to the negative of the gradient at
the current point.

* Key equation:
* W,;,; = W,—n.VL(w,), where n is the learning rate

* Essentially, the main thing we require now
* gradient of the loss function with respect to the weights (VL(w,))

https://bit.ly/20KFTsM

https://bit.ly/2oKFTsM

How do we compute the
ogradients?

Backpropagation

e Efficient algorithm to compute gradients w.r.t weights
* Key Idea: Chain Rule of Calculus
* Central algorithm for training neural networks

* Let’s consider a simple example to illustrate the idea

https://bit.ly/2FS5wPF

https://bit.ly/2FS5wPF

Backprop example on 1 hidden layer neural network

input
*y = ag(wz hy +ws,h,) where hy = o(w;1x; + Wy1X,) and
h, = o(Wypx1 + Wyoxs)

Backpropagation Example

{t+1} _ _ {t} oL Compute the derivative of L
‘Wi =W N o with this weight

dw11 / \
(1)

Backpropagation Example

. tt1y o {t) oL
Wip. = Wi —

6W11

Backpropagation Example

. tt1y o {t) oL
Wip. = Wi —

6W11

oL _ 0oL 0y
dwsz, 0y Owsq

Backpropagation Example

. tt1y o {t) dL
Win = Wi =0 5

dL 0L 0y

dh, 3y dhy

Backpropagation Example

t+1 t oL
6W11 oL
oL _ 0L 0hy G-

6W11 6h1 anl

Overall Training

 Same procedure can be applied to other weights

* Overall Training of Neural Networks:

* Till convergence (for e.g. when validation loss stops decreasing),
repeat:

* fForward Pass - Compute the predictions

* Compute training loss

* Backward Pass — Compute the gradients

* Update the weights with gradient descent equation

Are you wondering that you need to calculate all
these gradients by hand for each weight?

Answer I1s No!
Automatic Differentiation is the solution

Auto differentiation

* General way of taking a program which computes a value,
and automatically constructing a procedure for computing
gradients of that value.

* For e.g. gradients of loss function.
* Implementing backprop by hand is like programming in
assembly language.

* You'll probably never do it, but it’s important for having a mental
model of how everything works

* Most of the deep learning libraries (PyTorch, TensorFlow)
have this functionality as default

Roger Grosse and Jimmy Ba notes

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Auto differentiation

@ An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

@ In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

t1 = wx
z=1ti +b

Original program:

Z=wx—+b
y = 1 ts = exp(t3) You can create all kinds of
1 4+ exp(—2z) =1+t «—— functions by combining
1 these primitive operations
L=y —t) y =1/ts P P
te =y —t
t; = ta

L = t7/2

Roger Grosse and Jimmy Ba notes

http://cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec06.pdf

Convolutional Neural Networks

Classification

drilling platform

rilie mushroom adagascar ca
nvertible agaric monkey
grille mushroom spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus hire buliterrier indri
fire engine | dead-man's-fingers currant howler monkey

Retrieval

talk about
each layer
in detail
shortly!

We will

RELU RELU

— SN N W G M)

1CONV

3
o~
i
14
s
il
L
14

CONV

.¢§HI!:§J$ES

RELU RELU
CONV

CONV l

* What kind of assumptions do you think we need?

* The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

* E.g., edges, corners, contours, object parts, ...
* Let’s discuss a new layer: Convolution layer

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth

Convolution Layer

32x32x3 image

5x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

ConVOI Ution I—ayer Filters always extend the full
_—— depth of the input volume

32x32x3 image /
5x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer
__— 32x32x3 image

oxox3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wlz+b

~~ 1 number:

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3xa3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

3 weights are shared for 1
a single activation map

Convolution Layer

a1

I

I

V
——0

32

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

.

b

28

Convolution Layer consider a second, green filter

— 32x32x3 image activation maps (also called as

5x5x3 filter % channels)
=
@>@ 28

convolve (slide) over all

spatial locations
32 / 8

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
9x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
9x5x6
filters

10

24

CONYV,
RelLU

24

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
| 112x112x64

pool

—>

> o 112
224 downsampling

112
224

Single depth slice

MAX POOLING

11112] 4
S| 6|78
312 |1]0
1123]| 4

max pool with 2x2 filters
and stride 2
>

RELU RELU

— SN N W G M)

1CONV

3
o~
i
14
s
il
L
14

CONV

.¢§HI!:§J$ES

RELU RELU
CONV

CONVl

k
e
o
&l
=
i

!

¥

"

T‘:i .

™
Al
'

Increasingly complex
features at each level
Starting from generic
ones (lines, edges,
colours etc.) at lower
layers to specific ones
at the higher layers!

,../.rl_h-
——r Nl BRI
RN EENNEmE

///// AN

Sequence based Neural Networks

No errors Somewhat related Image
| Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

|

All images are CCO Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/

N7 P o https://pixabay.com/en/handstand-lake-meditation-496008/
A man riding a wave on A cat sitting on a A woman standing on a hitps://pixabay.conven/baseball-plaver-shortstop-infield-1045263/

top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk?

"I love this movie.
I've seen it many times
and it's still awesome.”

"This movie is bad.
I don't like it it all.
It's terrible.”

— O
— @

Sentiment
Classification

DETECT LANGUAGE HINDI ENGLISH SPANISH \% & HINDI ENGLISH SPANISH \

What is there for dinner today RO v 1 20 L %

aaj khaane ke lie kya hai

VB 30/5000 v D) @ / <

Machine
Translation

“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f . f i Pt
f f ttot Pt il

\ e.g. Image Captioning
image -> sequence of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! 1 ! bk Pt
f t Pt bt i

\ e.g. Sentiment Classification
sequence of words -> sentiment

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! 1 f T M Pt
f f Pt G i

\ e.g. Machine Translation
seq of words -> seq of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! i 0 f i N Pt
! f Pt Pt ot i

/

e.g. Video classification on frame level

__— TN\

Forward through entire sequence to compute loss, then
https://bit.ly/35jh0bg backward through entire sequence to compute gradient

https://bit.ly/35jh0bg

Advanced Sequence Models

* Vanilla RNNs have almost fallen out of favor because of
multiple issues with their training procedure
* For e.g. Vanishing Gradients

* Multiple advanced techniques overcome these issues in
different forms. Some of them are:
* LSTMs, GRUs

e Attention models

https://www.youtube.com/watch?v=3Hn_hEPtciQ
https://www.youtube.com/watch?v=IEbBIpP4c9E&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=11&t=0s
https://www.youtube.com/watch?v=PjMcA_NlB_8&list=PLZnyIsit9AM7yeTZuBmezKNc6hFHUPImh&index=10&t=0s

Graph Neural Networks

Success of deep learning on grid/sequence structured data...

Images Language

[~J h ! f = ’
.;, / %} oo
\ my o

SN \ -

&\6« "%W g

(Instagram:@kyokofukada_official) (Wikibooks)

«——— Direct
<mmm—- Indirect

Complex graph

$\\\65 -
el
<
[e

Association | Asst
--------- > Disease

Association ,+”
r

data

Disrupts

Biomedicine (Zitnik et al. 2018)

| %% *%k ||k K
* || Kok k
* kK *

+1

ok k(| Kkk
* * *x K *

Context Panels
*
*
x
*
*

+1

*kk || kK
*k ([khk || ?
L| Ak || KkKh

or F ok Kk *

© * k|| Kokk *

& * % * % *

% A B C D

o

'% :*: *:* * kK
Socia networks and <l k|| * *
social media graphs E E g H

Drug design (Duvenaud et al. 2015)

(Hamilton et al. 2017) Human IQ test (Barrett et al. 2018)

I t: h with
nput: Graph with node features Embedding space

- ~
-~ S~
~~~~~~
” ~
- S
-
-’ S
R ]
#

[~
~
~\
~

~
~
~
~
~
~
S~ ,
So -’
~~ -
~ -
~~ -
S~ . .
—

Task: Node/Graph classification

Goal: Learn node/graph embeddings that capture graph structure



GNNs learn node representations with Neighborhood Aggregation

Aggregate from neighbors
a¥) = AGGREGATE®) ({h,ff—l) ueN (v)})
Combine with current node

h(¥) = COMBINE® (hg’“—l), a,g’“))

For Graph classification use readout
to pool node embeddings

he = READOUT ({r{®) |v € G})

K GNN iterations captures K hop network structure

More resouces: https://www.youtube.com/watch?v=v3jZRkvIOIM, https://tkipf.github.io/graph-convolutional-networks/



https://www.youtube.com/watch?v=v3jZRkvIOIM
https://tkipf.github.io/graph-convolutional-networks/

Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions



In-memory computing

Memory
Huge amount of
data transfer to‘from
Input — Buffer memory
! 3 2
Compute —» Qutput

Conventional computing

Memory with

Outputs

Embedded Computation

il

A

A

y

[nput -

A
Buffer

No explicit data read

In-memory computing

Memory units include simple
compute units

Computations are done inside
the memory

Cost of moving data is
reduced



Comparing different memory technologies

Table 1: Emerging Non-volatile Memory Comparison

SRAM DRAM STT-RAM PCM ReRAM

Cell Size
- ~100  6-10 6-50 4-30 <2
(F%)

Multibit 1 1 1 x5 2-7
Endurance ~1016 ~1016 101 108-10° 108-101°
Read Ti

S 9 ~10 <10 <10 <10

(ns)
Write Ti
g e . ~10 <10 50 <10
(ns)
Write Epergy 105 ~ 1004 10083 ~10°1!  ~10-13
(J/bit)

Source: [3—-6]. Note: F represents the feature size.

In-memory computing
requires computing near or
inside memory

SRAM is area inefficient
DRAM is volatile
ReRAM is a good candidate

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381-386.



Non-volatile memory use

Table 2: An Overview of In-memory Processing Designs

Works ‘ Types Locations ‘ Design Levels Functions Applications
Guo et al. [7] 2010 Cache Circuit; System Logic; Arithmetic Generic
AC-DIMM [8] 2013 Main Memory | Circuit; System Associative Generic
Kang et al. [9] 2017 STT-RAM - Circuit Logic Bitmap
STT-CiM [10] 2018 Scratchpad Circuit; System  Logic; Addition; Vector Generic
HielM [11] 2018 - Circuit; System Logic Encryption, Database
Pan et al. [12] 2018 Co-processor | Circuit; System Logic Binary CNN
Cassinerio et al. [13] 2013 - Device Logic -
Wright et al. [14, 15] 2011, 2013 - Device Arithmetic -
Hosseini et al. [16] 2015 - Device Arithmetic -
Pinatubo [17] 2015 PCM Main Memory | Circuit; System Logic Generic
Burr et al. [18, 19] 2015 - Circuit MVM DNN
Sebastian et al. [20] 2017 - Circuit MVM Unsupervised Learning
Le et al. [21, 22] 2017, 2018 - Circuit MVM Transfer Learning
MAGIC [23] 2014 Co-processor Circuit Logic; Arithmetic Adder
Bojnordi et al.[24] 2016 Co-processor System MVM Boltzmann machine
ISAAC [25] 2016 ReRAM Co-processor System MVM CNN
PipeLayer [26] 2017 Co-processor System MVM CNN
AtomLayer [27] 2018 Co-processor System MVM CNN
GraphR [28] 2018 Co-processor System MVM Graph

Note: MVM - Matrix-Vector Multiplication; DNN — Deep Neural Network.

* PCM, STT-RAM, ReRAM have been used for in-memory computing
* We will focus ReRAMs for this presentation

Bing Li, Bonan Yan, and Hai Li, “An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications,” in GLSVLSI '19, 381-386.



ReRAM cell

Off State Program On State Erase
El El
Oxygen O s T T T t
vacancyT—O Gap length e
@@ i —5&3‘—
000 0006 wox |14

. (High (Off to (Low {(On to
Resistance) On State) Resistance) Off State)

» Resistance of ReRAM cell modulated by voltage

* Oxygen vacancies form a bridge between the two electrodes
* ON state

* No bridge = OFF state



ReRAM for Matrix vector multiplication

Cl11 cC21 V1

Cl12 C22 V2

1=l11+l51  13=l94];;

e Resistors are natural multipliers (V =1 * R)

* Crossbar structure enables high-throughput matrix-vector
multiplications

e Perfect for ML applications



Convolution layer CNN

7 2 3 3 8

4 sl g |4 1 (0 |-1 6

3 3 2 8 4 * 90 = —

g g [y 1T (0 |-

5 4 4 5 4 7x1+4x1+3x1+
2xX0+5x0+3x0+
3x-1+3x-1+2x-1
=6

e Convolution and Fully-connect layers are dominated by
matrix-vector multiplications

* Can be implemented using ReRAM crossbars



ReRAM crossbar

V1

AR

—DAC %

e
-

N

11=V1.G1

V2
G2

12 =V2}

I=11+12= AIIDC
(a) Multiply-Accumulate operation (b) Vector-Matrix Multiplier

 ReRAM crossbar includes multiple peripherals, e.g., ADC, DAC, etc.



Mapping weights to ReRAMs

 Mapping weights of
convolution layer to ReRAM
crossbar

* Input images are applied as
input voltage to wordlines

e QOutput is obtained at the
bitlines

2 U U wrL_si ]
2543 2 1 0 -

e—— 12544 —>f &7 & &
(12544=112*112) &




Mapping weights to ReRAMs

W = 2.25 > 0000 0010 0100 0000

/1

= 0000 0010 0100 0000
Input

Output ‘ Vi ‘ V2 * v3 *y4

(Y) <= Shift & Add

4
2164 {

i=1

* All bits of a weight are not
mapped to same cell due to
ADC size concerns

e Bits are distributed across
multiple cells

* QOutput is obtained by
accumulating partial outputs



ReRAM architecture

CHIP (NODE)

IR —Input Register

OR —Output Register
MP —Max Pool Unit

S+A — Shift and Add

o —Sigmoid Unit

XB —Memristor Crossbar
S+H —Sample and Hold
DAC - Digital to Analog
ADC - Analog to Digital

-
“

(e fite ][ i)
[EXTERNAL IO INTERFACE:

“'In-Situ Multiply Accumulate

.......................................

..............-.....---...................---.\‘\

CQ

|| XB |g[<| XB
e o

. [S+H S+H
e S xe
(= a) |
V. [S+H S+H

ADC
ADC|
ADC|

ADC

Multiple ReRAM crossbars
necessary for large CNNs

Crossbars are grouped in to
IMAs, multiple IMAs grouped
in to tiles

Peripherals include ADC, DAC,
on-chip memory, etc.



Example ReRAM architecture

ISAAC Tile at 1.2 GHz, 0.37 mm?

|

e ADC and Router introduce the

most power and area

* Crossbar itself is area and

power efficient

e |SAAC architecture has ~16k

crossbars of shape 128*128

A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars," in ISCA, 2016, pp.

Component Params Spec Power Area (mm?)
eDRAM size 64KB 20.7 mW 0.083
Buffer num_banks 2
bus_width 256 b
eDRAM num_wire 384 7 mW 0.090
-to-IMA bus
Router flit size 32 42 mW 0.151
num_port 8 (shared by
4 tiles)
Sigmoid number 2 0.52 mW 0.0006
S+A number 1 0.05 mW 0.00006
MaxPool number 1 0.4 mW 0.00024
OR size 3 KB 1.68 mW 0.0032
Total 40.9 mW 0.215 mm?
IMA properties (12 IMAs per tile)
ADC resolution 8 bits 16 mW 0.0096
frequency 1.2 GSps
number 8
DAC resolution 1 bit 4 mW 0.00017
number 8 x 128
S+H number 8 x 128 10 uW 0.00004
Memristor number 8 2.4 mW 0.0002
array size 128 x 128
bits per cell 2
S+A number 4 0.2 mW 0.00024
IR size 2 KB 1.24 mW 0.0021
OR size 256 B 0.23 mW 0.00077
IMA Total number 12 289 mW 0.157 mm?2
1 Tile Total 330 mW 0.372 mm?
168 Tile Total 554 W 62.5 mm?
Hyper Tr links/freq 4/1.6GHz 104 W 22.88
link bw 6.4 GB/s
Chip Total 65.8 W 85.4 mm?
14-26



Time

ReRAM execution pipeline

Layer-6

CNN layers
>

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

Image-1

,Image—ZN rlmage-1‘

Image-3| |Image-2| |Image-1

Image-4 Image-2 Image-1

Image-5 Image-2 [Image-l]
| imagess|

Image-2| | Image-1]

Images are processed one
after another in a pipeline

Different from GPU/CPU
execution

Reduces number of write
operations but requires
more crossbars to
implement



: Gmean_all

Gmean test

VGG-E _test

VGG-D_test

VGG~-C_test

VGG-B_test

VGG-A_test

AlexNet_ test

Mnist-0_ test

Mnist-C_test

Mnist-B_test

Mnist-A test

Gmean_train

VGG-E_train

VGG-D_train

VGG~-C_train

VGG-B_train

VGG-A _train

AlexNet_ train

I

I

Mnist-0_train

Mnist-C_train

Mnist-B_train

Mnist-A train

{_ |PipeLayer w/o pipeline
Ml Pipelayer

1E

100/ GPU
o,
=}
%105—
& F

L,

Performance of ReRAM accelerators

 Up to 100X speed-up achievable compared to GPU

* Area and power efficient as well



Why manycore ReRAM?

( Heat Sink ReRAM tile

’Output][ Shift&]
Register
[ Max ][Sigmoid]
__Pool unit

18 i e

si9Ae|

)

NG NG TN N

— ST

%8 )[x8 ] *ha*

GPU < <
XB][Sample&

L1 [ ) hold )
le I I Output

Memory DCJDAC regis?ter
/)| lcomroler|  iahaerounding

x
o
)

\

NdS-N INVHY34-W

si2Ae|

Millions of weights in CNNs

Pipelining requires many
crossbars to implement

Crossbars grouped into
tiles (cores)

Hence, ‘manycore’
3D allows for more cores



What about BN?

Input: Values of x over a mini-batch: B = {21, };
Parameters to be learned: v, 3
Output: {y; = BN, g(x;)}

1 m
MB%—E Xy
=

1 m
0 m Z(%‘ — )’
=1

// mini-batch mean

// mini1-batch variance

~ Xi — UB :
Ti < a // normalize

\/J%Jre

yi < vx; + B = BN, g(x;)

// scale and shift

Not every CNN layer has
matrix multiplications

BN layers are needed for.
Training deep CNNs

Division, square-root
needed for BN

ReRAMSs not good for these



Role of BN layers in CNN training

100
90

< 80 1 T T +  Xavier initialization can
— 70 <=
Z 60 + 4 replace BN layers
= 50
g 4 T * However, they are not
20 I
20 reliable always
0 .
2 =z z z =z =z =z = * Sensitive to hyper-
) ) ) @ ) [ ) ) .
Sz 2 3z & z 2 % parameter choice

VGG11 VGG16 VGG19 Res18



Heterogeneous ReRAM-based system

* Challenges with implementing

( Heat Sink %%ﬁ BN |ayeI‘S
y I | E%tier] [Sgmoid i FL.JII.-r.)recision

- AA— ? . D|V|5|o.n and square-root
8%/ — &) mA) R * Not suited for ReRAMs
mg‘/ 77 —— |18 xe][ *hi" . Solution: Heterogeneous
= 7= 7 - DS architecture with GPU+ReRAM
%g- 1 | || Memory [‘E[D—][gg& e GPUs can do BN
32 I/ I// controller Stochastic rounding




Mapping CNN training to heterogeneous PIM

( Heat Sink

ReRAM tile

[ Output][ Shift&}
Register

| | Max
‘ Pool

si9Ae|

unit

] { Sigmoid]

B

B
C

S

x /£

)

;i

< ,,/ GPU

- L1

5z € :
SO - : || Memory
32 ‘J/ / controller

|E0)

Output

Convolution and Fully
connected layers on ReRAMs

BN layers on GPUs

3D integration to allow fast
data exchange



Performance of heterogeneous PIM

100% GPU (Basehne)« AccuReD 20 B AccuReD GPU
80%

60% +70% gain

40% 10

20% No BN I I
0%

Accuracy
Speed up

1 5 10 15 20 25 30 35 40 45 50 Lenet VGG-11 VGG-19 ResNet-18
Epoch
* Without BN, training of VGG11 * Without BN, training of VGG11
with Cifar-10 failed with Cifar-10 failed
* With BN and heterogeneous * With BN and heterogeneous

PIM, accuracy is near-GPU PIM, accuracy is near-GPU



GNN training

A

)ko

Graph-based
Model

Descriptor-based |-

Model

| (A

SLogP =1.61
~_TPSA=26.30 _

SMR =3.78
atomCount = 10
NumRings = 1
LogS =-1.74

......

Learned
Features

Hand-crafted

Features

4

4

GCN,

G\

.+ |MPNN 2 e
Attentive FP... 2 @ Bioactivity

® ADME
® Toxicity
SVM,

XGBoost, |,. ......
RF
DNN...

DL on graphs

Useful in
recommendation
systems, Drug
discovery, etc.



GNN training on ReRAMSs

In‘put Graph —— Updated )
A 0O 1 1 Feature - Feature CA
Vector Vector T
/c;>i> 101 0|y, (Y=W-X) 1 YA (0 1 1 0) (Y,
(B) / 110 ‘ ...... 7 1 0 1 0|y|Yp
‘D) 0 010 - . &) /D’) 110 1 Yc
Seseees ’[Xu‘, Xp*:waXp® ~W?|ing/;\ts [ Y1)1; Yuz, i i Vl)njA g & L 4 Yp
\ . ) \ . ]\ - f
Input Graph Vertex-Centric computation Edge-Centric computation

* GNN layers also rely on matrix-vector multiplications
* GNNs usually not deep => BN layers not needed
* Can be implemented using ReRAMs



Storing sparse data on ReRAMs

= @ ] |DDecsti‘rj\atgor}-idg : | ‘4«.
a8 N N
“a04 o 3 3 0 o I
A \ s c|o]ojo]olo]o]o]o0 Ty [
® sa a@»éd1o1ooooo» B N N A
\ / = o [o]o]o]o]o]o]o]0 R A
0 D S f|ofo]oJo]1]o]0]1 B R R
@ 16 glofo]ofo]of1]o]0 R N B R YA
@ hl1]o]2]olo]o]o]o RV A Y i ot et

e Graph adjacency matrices are very sparse
* >00% data is zero, multiplications with zero is redundant
 Storing on large ReRAM crossbars is wasteful




Using smaller crossbars

, Pegtigatond | il
a[oJ2]o]2]oo]o]o0 NN
b[1|o[2|o[o]o0|0]0 N N A )
s c|[ojofofo]ofofo]0 RRCVRCIRCTE.
¢ d[1[o]1[o]ofo]o]0 »

Se|O|O|OJO|O|O(O]O ] AR AR
Qf|lojofojof1[o0]0]1 ST R A A
g [olo]ololo[x]0]0 K s S
h11]011]0(0]0|0]0 %%%%\ \"«'\"’\'\"’\l\"«.

* Smaller crossbars are better for storing sparse data
* Some crossbars will be storing all zeros
* We do not need them at all => Area and power savings



Heterogeneous PIM for GNN training

* GNNs have both dense data
(weights) and sparse data
(adjacency matrices)

* Dense weights => Large

| eDRAM |

S8 |

QQQQQ

Peripheral
Circuits

E-PE Tier t———
Vertical Links

crossbars
* Sparse data => Small crossbars
* More efficient storage

V-PE Tier
E-PE Tier

Router




Power-performance-area trade-offs

s Cores Required === Area Power .
T8 S
NE 2 N 23
ERR R
£ ° 501 0.1 £ 5
c .28 S 82
Z 4= . . 2
0.01 0.01
8x8 16x16  64x64 128x128 256x256
Crossbar Configuration
8
2 % 6.28
i
5>
h 1.56
0 o .
=% o1s 0.28 0.77 =
8x8 16x16 64x64 128x128  256x256

Crossbar Configuration

Larger crossbars are inefficient
for storing sparse data

However, they are more area
and power efficient

Peripheral area >> Crossbar
area

Good design should reduce
peripherals since crossbar area
is relatively small



Homogeneous PIM for GNNs

 ReRAM architecture with large

(Q o : .
CDRAMJEE I\ ™ [ ™ crossbars only
e Q3 ) 5
i 22| | Tile | Tile * Both dense and sparse data
— —

stored on large crossbars
* Lower area and power overall

eRAM
Xbar

Xbar
Peripheral
Circuits

Vertical Links

ReRAM

[R
[

e 3D NoC for efficient
communication

Planar Links
Router «




Message passing in hardware

Iter: N

Iter: N-1

* GNNs utilize neighbor information for predictions

* Ycurrent = f(xcurrent, Yneighbor)

* Repeat for every GNN layer and iteration
* Message passing => increased communication in the computing system



Many-to-few communication in ReRAMSs

-
—
ey
|
Output «
V3 [«

V2 [«—

Each GNN layer requires vertex (V)
and edge-centric (E) computations

Each V computation is associated
with unique weights

E computations require graph
adjacency matrix (which is unique)

Communication between multiple
V’s to one E => Many-to-few



Reducing communication using DroplLayer

* Dropout is a regularization
technique to improve
accuracy

* DroplLayer = Dropout +
DropEdge

* Improved performance using
DroplLayer by reducing traffic

X

+1

ﬂ/ertex com putation\

/ Edge computation\

Normal training

ﬂertex computatioh
ONR.&

@@
\o

\C

/Edge computation\

&6

DroplLayer-based training




Droplayer performance

ReGraphX mDARe

= GPU ® 2D No Drop
|_Il = I. — II_L
PPI

Reddit Amazon2M
Datasets

Execution
Time
oo

O ONCO—

* Dropout improves accuracy

* Also reduces communication by
‘dropping’ data

* [mproves execution time




Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions



Reliability of ReRAMSs

CLASS 1: | Physical Variables (PVs) Faults and Fault Models [ Ll lead to-
Process 1 1
Variations | b g L CLASS 3:
El d SAF-1 ‘ 1 M H
- e operatonsl  ®*  RE@RAMSs have reliability issues
etc. § SAF-0
Multipl H
Wi  Manufacturing defects, Process
Th«:irmal - Deep fault . . . .
radient,
s \ P variations, write variance, etc.
n Multiple
Slow-write
d
O —=—« Not useful for real use
thickness, \ AD
etc. Design-induced coupling
High-density
cross-bar
Annealing ( Drift
rate, etc. O channel \~
"o
CLASS 2: Defects
(traps, breaks, voids, ( Parametric Benign Catastrophic :|> Fault Size
etc.)

Fig. 4: Classification of fault origins and fault size.



Precision issue in ReRAMSs

100% __Full-precision * ReRAMs use 16-bit fixed
80% /j_/v/"’ point precision
S 60% : :
- * GPUs use 32-bit floating-
&) (] . . .
205 cow-precision point precision
0% * Accuracy loss at low

1 5 10 15 20 25 30 35 40 45 50 . e o .
Epoch precision training



Different types of SAFs

Hard Faults

(Faults where the
resistance of a ReRAM
cell cannot be changed)

e Different types of faults in ReRAMSs

Static Faults

(Faults that exist before use
ie,att =07)

Cause: Manufacturing defects

Dynamic Faults
(Faults that appear during
usei.e., att > 0)

Based on the time of
origin of the fault

Permanent Faults

(Faults that remain forever)
Cause: Wearout due to limited
endurance of ReRAM cells

Finite-duration Faults
(Faults that exist from t=T, to
t=T,+4)

Cause: Repeated write-0 (or
write-1) pulses to a ReRAM cell

Based on duration for
which the fault remains

 Some are permanent, some can be short-lived

* Some appear during use




Effect of faults

W ldeal ™ Fault-0.1 = Fault-2

100% Faults cause accuracy loss

80% * Some CNNs may fail to train
60% completely due to faults

40% * Faults affect both weights
20% I and gradients

o5 |

Lenet Alex VGG1l1l VGG16 VGG19 Resl18

Accuracy



Thermal noise

~B=Goy = Gopp

4.5E-08 Freq- 1 GHz Freq = 10 MHz
4E-08 510 e
s BAENE RN UMD
D 3.5E-08 . kA GRALL @3kan L1l | 1ho5 AG
8 35-08 8 05 AG 8 2
c
€ 2.5E-08 §°? C g .
‘g‘ 2E-08 20 05 AG 21
T 1.5E-08 5 2 == 1.05AG
c L 0.2 80
S 1e-08 0 5000 10000 0 5000 10000
SE09 | o gt——0t—0—0—0—0—0—0—9 P Samples
0
300 310 320 330 340 350 360 370 380 390 400 A . )
Temperature (K) Jrms = —— = W h—
v & 8

e Resistance changes with resistance

* Thermal noise can affect stored value
* Accuracy loss due to temperature



Accuracy loss due to noise

Wideal ®mF10 wF100 F250 mF500 ™ F1000
100%

80%
40% B

Lenet VGG-11 VGG-19 ResNet-18
CNN Architecture

Accuracy

* Accuracy drop due to noise
* Higher accuracy loss at higher frequency



Write endurance of ReRAMSs

* Repeated writes can damage
ReRAM cells

* Cells stop behaving as usual

* CNN training involves many
weight updates => writes

—
o
B

Failure

Resistance (Q)
>

10°



GNN training in presence of faults

100% m Ideal ® Faulty

95%

([
90% as well
85% .
20% . Accurqcy drop at higher fault
75% I densities
70%

Fault-1 Fault-2 FaultS * Must be addressed

Faults are an issue for GNNs

Accuracy



Introduction

Robust and Efficient ReRAM-based System

High Inferencing Accuracy under Stochastic Noise

Area-, Energy-, Latency-efficient Designs
Multi-objective Optimization

Low-cost Optimization Algorithm

High-quality Pareto-front Designs



DNN Inferencing Process on ReRAM Crossbars

I I
: Training :
: W .
IA % :
: Network : -
DNN Hardware Stochastic Design
Parameters Configurations Noise Objectives

In need of hardware-aware training method




Challenges in Robust ReRAM design

(1) High-amplitude noise (2) Aggregated noise due to (3)Reduced noise margin
due to frequency and the combination of due to high-resolution cell.
temperature. stochastic noise. ResNet20

100 CIFAR-10 test acc. 90 t T =gé(k;;}lim‘ @ PROG | |

o
o
L

Accuracy (%)

| -8~ 300K )

10~2 10-1 10°
Frequency (GHz)

71.81

Accuracy (%)
(0.0}
o

Inferencing

-~
o

65.88

D
o

2 8
Cell Resolution (bit)

Figure 1 from [He, Zhezhi, et al. 2019]



ReSNA Methodology

ReSNA: ReRAM-based Stochastic-Noise-Aware Training

(1) Analysis the distribution (2) Include the relative (3) Apply the hardware
of noise under frequency conductance change to the settings to the quantization
and temperature setting. ReRAM cell during training. step.

[ Thermal Noise
Shot Noise

BN RTN R2.el:ative Noise' (Zoom in 'for First 16' Levels) | ResNet20

I Programming Noise 88.48
A8

e}
o

85.86g4 g 59.85

71.81
< I 69.61
[ Baseline [] PROG
0 B RGN [ ReSNA

85.06

x10~7 Absolute Noise

Amplitude
.—‘

-]
o

Accuracy (%)
Qo
O

65.88

Amplitude

D
O

0 5 10 15 S ;

0.‘ | 100 200
Conductance Level Cell Resolution (bit)

Conductance Level



ReSNA Results

Freq=100 MHz Freq=500 MHz Freq=1000 MHz

88 88 88

EN..on BN oh Y i

2 86 2 86 2 86
c = ‘C ™ c >
a Q < <

¢ £ 84 g g 84 2 8 84
g = T = c =

= S 82 [ Bascline E S 82 E S 82
< Bl ReSNA w/o Voting < <

80 I ReSNA w Voting 80 80

(a) 300 350 400 (b) 300 350 400 (C) 300 350 400
Temperature (K) Temperature (K) Temperature (K)

ReRAM inferencing accuracy under various temperature and frequency settings.
8-bit cell resolution, 64x64 crossbars. ResNet20 on the CIFAR-10 dataset.

v’ Validates for the combination of stochastic noise.

v Works for various temperature and frequency setting, as well as the
high-resolution (8-bit) cell setting.

v Shows promising accuracy improvement under the 1000MHz and
400K.



Robust and Efficient ReRAM-based System

. o . 1
2 Training 11 Inferencing g
1 : : Design Space Configurations: 1
1 11 | ReRAM Cell Resolution (Res,,;;) 1
] Operational Frequency (Fregq) —» 1
1 : : Temperature (7) |<_ Xbarg,, Res, Evaluat 1
i . valuation 1
1 1 g | Crossbar Size (Xbar; ) Thermal Noise Buffer :
: W LS — e '
' N ] 1G | . . j Shot Noise Crossbar 5
:A ] = L1 Decodtey e Inferencing Accuracy 1
" NN - Uy '
. o\ — == el Mux e Hardware Area (f; 1
. n 1 ':I . e Execution Time (f3) 1
: 1 B | I Programming Noise Sense Amplifier e Energy Consumption :
: : : ,— | ] j ‘Write Driver (ﬁi) 1
) 1

. Network 1 p
' PE 1

DNN Hardware ReSNA Trainin Design

Parameters Configurations Objectives

In need of an optimization strategy

Q1: The number of available choices = Q2: Full hardware training process take
is a combination problem. non-negligible computation cost.



Design Trade-offs Considering Different Objectives

Inferencing Accuracy

gE
5 %8
g 8

= < 80

1 2 128 x 128
64 x 64
3 132 32

Cell Resolution(bit) Crossbar Size

Execution Time

Latency(ms)

1

9 128 x 128

8 32x32 o1 ot
X
Cell Resolution(bit) Crossbar Size

Area Overhead

Arca(mm?)

128 x 128

64 x 64
8 32 x 32

Cell Resolution(bit) Crossbar Size

Energy Comsumption

128 x 128
64 x 64
32 %32

8
Cell Resolution(bit) Crossbar Size

Observation: a global optimal
design configuration is not
achievable.

Goal: Find design
configurations that lie in
the Pareto set with the
minimal cost.



MOO Algorithms for Hardware Design

$: the objective $$$: the objective
5 THferohERgACERE L) function is cheap to function is
e Hardware Area (f,) .
e Execution Time (é) evaluate eXp ensive to
e Energy Consumption (f;) evaluate
Objective functions for €.8-: NSGA-I I’

ReRAM design. AMOSA e.g.: Baysian
Optimization, Max -
entropy Search



MOO Steps and Goal

11 Inferencing
1

Design Space Configurations:

11 L
ReRAM Cell Resolution (Res, ;) F d P t -
: : Operational Frequency (Fregq) Xb s l n are O
1 | Temperature (7) Al size Res,, Evaluas
i . valuation
13 | Crossbar Size (Xbar,;, ) Thermal Noise Buffer

Optimal ReRAM-
based System
with Minimal Cost

LI \‘
o G l ! ' Shot Noise D Crossbar

M n o Inferencing Accuracy
T

"VI

]

X e Execution Time (f3)
Programming Noise Sense Amplifier | o Epergy Consumption

[ ] PE i aideialnls

Write Driver (fa)

Decoder
0 = 0
L Mux o Hardware Area (f;

DNN .- i
b Hardware  p.GNA Training PeSi8"
arameters Configurations Objectives

5 » 5



CF-MESMO: Continuous Fidelity

>
Definition for continuous fidelity : Training epoch for ReSNA (Fidelity)
»Vary the number of training
epochs in ReSNA to trade-off . .
computation cost and accuracy >
of objective function Computation cost
evaluations.

» » »

Computation cost for one
evaluation process can be
controlled by fidelity selection.




CF-MESMO: Max-Entropy Search

Algorithm 1 CF-MESMO Algorithm

Input: ReRAM design space X'; DNN 7r; four objective functions f; and their
continuous approximations g; using ReSNA training; total cost budget Ciotq;-

Surrogate model: Gaussian Processes

1: Initialize GP models GPq, - -+ , GP4 via ReRAM design evaluations D
2: While C; < Ciotq; and not converged do
3: foreach sample s € 1,---,S:

Sample the Pareto Front 4 Sample highest-fidelity functions fg ~ GP; (., 2})
5: F¥ < Solve cheap MOO over (f1, -, fK)
6: | Select ReRAM design and fidelity pair:
(xt,2t) < argmaxxcx,zcz o+(x,z,F") Equation @
7: Pertorm KeSNA training of DNN 7 with KeKAM design and fidelity pair (x¢, z+)
8

Calculate the information gain per . _ _
Evaluate objectives f1, fo, f3, fa for trained DNN on ReRAM design x;

unit cost 9 Update the total cost: C; < C¢ + C(x¢, 2¢)
10:  Aggregate training data: D < D U {(x¢, yt, 2z¢)}
11:  Update surrogate statistical models GP1,--- ,GP4
12: t+t+1
: : 13: end
Select next candidate ReRAM deSlgn 14: return Pareto set and Pareto front of objective functions fi(z),-- - , fa(x)
and fidelity pair

4 S 7§gj)¢( (95)

o1 Vs ') (95)
at(X,Z,f)—W;; 2@(7293.)) —In(®(vs 7))




Using CF-MESMO to Optimize ReRAM Crossbars

e CF-MESMO vs. NSGA-Il and random search.

x 1026

P
L

Hypervolume

CF-MESMO
NSGA-II
RandomSearch

0 50

v' CF-MESMO can achieve a higher-quality Pareto
optimal set for the same total computation

100 150 200 250
Total Computation Cost

300

cost for ReRAM design evaluation;

v' Max-entropy based search is highly efficient
in terms of achieving high-quality Pareto

Optimal.

* CF-MESMO vs MESMO.

x 1026

o e——
- CF-MESMO
6.8 | MESMO '
) 50

( 100 150 200 250 300
Total Computation Cost

v The continuous-fidelity setting in CF-MESMO
can guarantee higher quality Pareto front with
lower computation cost when compared to the
single maximum fidelity algorithm MESMO.

v" Fidelity setting in CF-MESMO makes the next
candidate selection is based on the
information gain per unit cost.

Hypervolume




Pareto Optimal and Pareto Set

ResNet20-Output Space ResNet20-Input Space

128
= 90 1000 -
? 89.5 N 800 4
2 : 67 100 ~
= *Taag " eeTd = kS The number near
g i 56 A < 600 7 :
= 5 658 | 3 - 15 o g the datapoint refers
o 53 < ] 2 c
£ 885 O L I s & to the optimization
- 28  ¢100 = 7 v e 1 ion i
b o072
E 88l 5 iteration index.
= 3 \ 9= :
50 £ 3} P =., i 400 |7 .
100 2 2 A9 I"\.‘ /”:’/,,—" ‘ () 8 30&) (;!)() 32
Energy(u.J) Latency(m 9)" .~ Cell Resolution(bit) =Temp91 ature(K)

v" All the points shown on the flgure lies on the Pareto front.

v We can avoid hlgh-latency or high-energy de51gn based on our criteria
and budget. |

v From the Pareto set, we can see that high- cell resolution setting or high-
frequency setting appears in the Pareto front due to the ReSNA method.



More Results and Analysis

ResNets Pareto Front VGGs Pareto Front
‘E 90 | i . % 90 | 3
<€é 89 Y ...: g 89 i
g 8 °. ResNet20 g = ’.,s :. )
- g gl soe o
& 10 = 510 \//m/"?)o
50 10 50
Encrgy(u,ll)oo 1 Latency(ms) Energy(u,l]%o ' Latency(ms)
v There is a large overlap among the various v The distribution of Pareto
. front for VGGs shows a
clusters within the same network class. .
o different pattern.
v In designing ReRAM-based accelerators, we v More details are discussed in
should first set the expected inferencing our paper.

accuracy and hardware efficiency target and
then choose the network using the Pareto
front.



Summary: BO to configure ReRAM designs

ReSNA Training Method

' : Design Space Configurations:

Efficiently Find Pareto- | = o . i Build Robust and Efficient
Optimal Designs ] % % X H f9 B=H7= @] ReRAM-based System
" - I:“:”:‘ g e Sense Amplifier | 3 Lxecuti E

CF-MESMO Method



Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

 Summary and Promising Directions



Existing mitigation methods

Intended computation: 5+ 7 =12

5*19
5 = | Encode with | ==
A=19
7 =P (x=N*A) |=—>
7*19
(7+#5)*19+ A

=230

Residual Correction

Decode
(x modulo 19)

Syndrome

™ -
Correct output:
2 | -2 230 -2 =228
3 >
18
Correction
Table

* Error correction codes, Use redundant hardware,

retraining, etc.

* High area and power cost



Thermal noise

~B=Goy = Gopp

4.5E-08 Freq- 1 GHz Freq = 10 MHz
4E-08 510 e
s BAENE RN UMD
D 3.5E-08 . kA GRALL @3kan L1l | 1ho5 AG
8 35-08 8 05 AG 8 2
c
€ 2.5E-08 §°? C g .
‘g‘ 2E-08 20 05 AG 21
T 1.5E-08 5 2 == 1.05AG
c L 0.2 80
S 1e-08 0 5000 10000 0 5000 10000
SE09 | o gt——0t—0—0—0—0—0—0—9 P Samples
0
300 310 320 330 340 350 360 370 380 390 400 A . )
Temperature (K) Jrms = —— = W h—
v & 8

e Resistance changes with resistance

* Thermal noise can affect stored value
* Accuracy loss due to temperature



BN layers to reduce noise effect

—\/-id eal V-all V-alt V-three V-none
100%
80% -
>
< 60%
5
g 40%

20%

0%
1 5 10 15 20 25 30 35 40 45 50
Epoch

V-all: All layers are followed by normalization, V-alt: every alternate layer has normalization
V-three: every third layer has normalization, V-none: No layer has normalization

* Noise results in exploding weights and gradients
 Normalization layers can help reduce impact of noise

* Near-ideal accuracy even at 1GHZ, 100°C (worst case) when normalization is used



Different types of SAFs

Hard Faults

(Faults where the
resistance of a ReRAM
cell cannot be changed)

e Different types of faults in ReRAMSs

Static Faults

(Faults that exist before use
ie,att =07)

Cause: Manufacturing defects

Dynamic Faults
(Faults that appear during
usei.e., att > 0)

Based on the time of
origin of the fault

Permanent Faults

(Faults that remain forever)
Cause: Wearout due to limited
endurance of ReRAM cells

Finite-duration Faults
(Faults that exist from t=T, to
t=T,+4)

Cause: Repeated write-0 (or
write-1) pulses to a ReRAM cell

Based on duration for
which the fault remains

 Some are permanent, some can be short-lived

* Some appear during use




Weight clipping

—Max-Conv2 Avg-Conv2

Clipping:
lwl,if lw| <e
lw| = .
€,0therwise

© © © o
= N W b

CNN weights
(Absolute values)

o

1 5 10 15 20 25 30 35 40 45 50
Iteration

* Weight clipping acts as regularizer and reduces the sensitivity to

various types of distortions

* Clipping can prevent large weights
* Helps CNN training



Weight clipping for CNN

100% M Ideal m Faulty m Weight clipping

. 80%
(]
60%
40%
20% I I
0% i

Lenet Alex VGG11 VGG16 VGG19 Resl18

Accura

* Weight clipping can restore lost accuracy
* Prevent exploding gradients and activations
* Enables stable training



Weight clipping for GNNs

M Ideal m Faulty = Weight clipping

Fault-1 Fault-2 Fault-5

100%
95%
90%
85%
80%
75%
70%

Accuracy

* Helps GNNs train in presence of faults
* Near-ideal accuracy
* Hardware implementation

* Mux and comparator needed
* Low overhead implementation



Outline of Tutorial

* Exponential growth of Deep Learning and Hardware Challenges

* Introduction to Deep Learning
* CNNs for images, RNNs for sequences, and GNNs for graph data

* ReRAM for Processing-in-Memory (PIM) to reduce data movement
* Heterogeneous GPU/ReRAM manycore systems for CNNs

* ReRAM based manycore systems for GNNs

* BO methods to configure ReRAM designs for improved Reliability

* Methods to improve Reliability of ReRAMs

e Summary and Promising Directions



Summary and Promising Directions

* ReRAMs have shown great success in accelerating DL workloads
* Significant progress on improving the reliability challenges of ReRAMs

* Much work needs to be done for ReRAM based systems for GNNs
* Exploring ReRAM based manycore systems for transformer architectures

* Exploring alternative non-volatile memories (e.g., Ferro-electric)
* Understanding the power, performance, and reliability trade-offs w.r.t ReRAMs



