Fully Homomorphic Encryption Tutorial

Iyad Alhasan
December 2024

1 Introduction

Fully Homomorphic Encryption (FHE) is a groundbreaking cryptographic
technique that allows computations to be performed directly on encrypted
data without needing to decrypt it. This ensures that the data remains secure
and private throughout the computation process. In this tutorial, we will go
over one of the most famous lattice based FHE schemes called CKKS.

/2 Z{X)/(x™ +1) (Zo[X)/(XN +1))?

Message encode Plaintext encrypt Ciphertext
m p(X) ¢ = (eo(X), 1(X))

compute f

Message decode Plaintext decrypt Ciphertext
m' = f(m) P = f(p) = f(e)

ch/2 Z[X)/(XN +1) (Zo[X]/(XN +1))?

Figure 1: CKKS high-level Overview.

2 Overview

Figure 1 shows the complete flow of CKKS FHE scheme. This scheme
enables encrypting complex values and encodes the messages into an integer
polynomial before encrypting and operating on the values. First of all, the
messages vector of size N/2 is encoded into a polynomial p(x) modulo ¥ +1
(plain text polynomial). Then, the polynomial gets encrypted (cipher text
polynomial) and sent to the other end (ideally, a server that will process the
data). Once the data processing (compute of a specific function is carried on
the cipher text polynomial), the results will be sent back to the client and
then will decrypted and decoded respectively.

3 Encoding & Decoding

The first operation done on the message vector is “Encoding”. In this setup,
the encoding process converts a message vector into a polynomial that be-
longs to a specific set of values called “integer rings” where the highest power
and the highest coefficient value possible for that polynomial are set (if at
any given time after doing any operation the highest power of the coefficients
exceed the highest level, the polynomial is divided by a special polynomial
called the cyclotomic polynomial until remainder polynomial highest power
is below the limit). Note that encoding only changes the representation of
the data and does not make it secure. Also, encoding can change the data
“shape” into lots of things but for this method (CKKS) its primary goal
is to represent the data as polynomials to utilize properties of polynomials
(polynomial rings). The way the encoding is derived is as follows:

1. We need to have a polynomial f(x) such that when we plug in every
root of the cyclotomic polynomial (will explain this below) we get the
message vector components (for every root plugged in f(x) the result is
a message component or “slot”).

2. Based on the description above, we have defined the decoding process
(converting the messages from polynomial view back to the original
vector view).

3. Now to find out how to carry the encoding process, we will use our
definition of the decoding process to determine how to do the encoding.

4. If you have studied Linear Algebra, you probably know that one way to
solve a system of equations is to model it as matrices in the following
way:

204+ 3y =8
0T —y = —2

: b

Then the Coefficient matrix (let’s call it A) inverse is found and mul-
tiplied to find x & y values.

becomes :

5. Now back to our case, our polynomial after encryption should look
something like this:

f(z) = c32° + o2 + 12 + ¢

This general form can encode 4 message components “slots”. The rea-
son why it can hold 4 messages is yet to be explained and will be
discussed later. To retrieve these 4 messages, we will be given 4 special
values (will denote them by((1, (o, (3, (4) for x that are called the roots
of unity of the cyclotomic polynomial (this special polynomial will be
discussed later). Plugging in the equations yields the following:

my = f(¢1) = e3(G)’ + e2(G)* + e(G) + o

my = f(C) = e3(Ca)” + e2(G)® + er(&) + o

Now this is a system of linear equations that when written in matrix
form looks like:

L G (G)° ()] [my
1 G (@) (@7 |a] _ |ma
L G (GB)? (6P (e ms
L G (C)?* (Ca)?] Les my

class CKKSEncoder:
"""Basic CKKS encoder to encode complex vectors into polynomials.

def _init_ (self, M: int):
"""Initialization of the encoder for M a power of 2.

xi, which is an M-th root of unity will, be used as a basis for our computations.

self.xi = np.exp(2 * np.pi * 15 / M)
self.M = M

@staticmethod
def vandermonde(xi: np.complex128, M: int) -> np.array:
"""Computes the Vandermonde matrix from a m-th root of unity.

N=M//2

matrix = []

We will generate each row of the matrix

for i in range(N):
For each row we select a different root
root = xi ** (2 ¥ i + 1)
row = []

Then we store its powers
for j in range(N):
row.append(root ** j)
matrix.append(row)
return matrix

Figure 2: Initialization of CKKS encoder class, where xi represents (and
Vandermonde function implementation is shown below it.

This System can now be solved to obtain the coefficients of the the
polynomial we are trying to construct.

The step above underline the basic idea of encoding and decoding. The
constructed coefficient matrix is a special matrix called the Vandermonde
matrix (see construction in figure 2), this matrix has unique properties
and has a special way of its inverse to solve the system. Second, The special
keys we used are roots of unity of the cyclotomic polynomial which is used
very often in cybersecurity when representing data in polynomial format.
Different cyclotomic polynomials are used for different number of message
slots that are required. An example cyclotomic polynomial is 8th cyclotomic

polynomial:
Py = X*+1

which has 8 roots of unity:
e i =0,1,..7

Note that for i is even, the result will be either real or imaginary, so we do
not use the roots when i is even. This leaves 4 roots to be used which may
lead us to think that it will allow us to encode 4 message slots, but in reality
this is not the case. The definition of the encoding operation has one extra
criterion, the coefficients of the polynomial we obtain from encoding should
be real numbers (no imaginary part). Due to this and after lots of math,
it was found that only half of these roots can uniquely encode the messages
(the other half are conjugate to the first half and will yield the conjugate of
the original message slot), hence dropping the number of messages we can
encode in our example to only 2.

To understand this encoding and decoding in more details you can refer
section 2.4 of On Architecting Fully Homomorphic Encryption-based Com-
puting Systems and using the following blog CKKS Full Encoding and De-
coding which includes a google colab notebook containing the code to run
the encoding and decoding algorithm. You will notice that the blog post
introduces an extra step which involves a projection of the message vector
(project from Quaternion domain (H) to o(R) because everything in (H) is
not in o(R)). It is not easy to comprehend this part and the first reference
ignores it in their example (yields a similar result in basic examples, but
effect on large scale is unknown).

4 Encryption

Encryption in CKKS Scheme is based on the Ring Learning with Error Prob-
lem (RLWE), which is a variant of problem called Learning with errors
(LWE). If you have taken any cybersecurity courses before, you probably
know that encryption relies on creating values called the secret keys using
mathematical problems that are hard to solve by brute force (trying every
combination possible). It is worth noting that CKKS is a public key scheme,
meaning that the client (holder of the message) creates two keys, a secret
key and a public key. While the secret key will be held only by the user and

https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/

def encode(self, z: np.array) -> Polynomial:
"""Encodes a vector by expanding it first to H,
scale it, project it on the lattice of sigma(R), and performs
sigma inverse.

pi_z = self.pi_inverse(z)

scaled_pi_z = self.scale * pi_z

rounded_scale_pi_zi = self.sigma_R_discretization(scaled_pi_z)
p = self.sigma_inverse(rounded_scale_pi_zi)

We round it afterwards due to numerical imprecision
coef = np.round(np.real(p.coef)).astype(int)

p = Polynomial(coef)

return p

Figure 3: Encoding operation (sub-operations not shown) as per CKKS Full
Encoding and Decoding.

def decode(self, p: Polynomial) -> np.array:

Decodes a polynomial by removing the scale,
evaluating on the roots, and project it on C~(N/2)

rescaled p = p / self.scale
z = self.sigma(rescaled p)
pi z = self.pi(z)

return pi_z

Figure 4: decoding operation (sub-operations not shown) as per CKKS Full
Encoding and Decoding.

will be used to decrypt the data once the data sent to server is back, the
public key will be shared with the data and everyone can obtain it. Public
key function is to encrypt the data and is also used in internal operations at
the server side to keep the cipher text decrypt-able by the same secret key
(gets used in an operation called key switching that makes sure the data stays
decrypt-able by the same secret key without decrypting or compromising the
data lying within the cipher text). to be able to understand RLWE, lets
talk a little bit about how LWE works. Imagine a uniformly spaced integer
matrix of size nzn (Z;*") and lets call it A. Now lets imagine a vector of
size n (Zy)that is going to be our secret key s. If we multiply A.s (which
will result in a (Z})) and finally add an error e (represented by a (Z7)) to
that result, it will be very hard to recover the secret vector s due to the un-
certainty produced by the error term even if the uniform sampling is known

https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/

z = np.array([3 +43j, 2 - 13])
z

array([3.+4.3j, 2.-1.31)

p = encoder.encode(z)
P

z + 160.0 + 90.0 z + 160.0 z* + 45.0 =3

Figure 5: Example of encoding a message (z is the message vector).

— 2 3
mlx) =160+ 91x +161" +d6x” | Encrypt T o (x) = 8138 +8083x + 816447 + 5617
() =4 +x + 11x% + 105

C:

Figure 6: Encryption example

to public. This actually is the process to create the public key, which is the

following pair of data:
p=(—As+e A

This problem is called lattice based problem because it can be demon-
strated by a vectors projection and addition on uniformly sampled lattices.
RLWE is a variant of LWE, the difference in RLWE is that it defines A, s&e
as integer polynomials modulo X*+ 1. Encryption of the message plain text
m goes as follows:

ciphertext = (m,0) +p = (m — A.s + e, A) = (co, 1)
decryption of the cipher text using secret key s to obtain the plain text:
cot+c.s=m—As+e+As=m+exm

Note that the two equations above hold true for both LWE (A, s&e are
vectors) and RIWE (A , s & e are integer polynomials modulo X* + 1 and
coefficients modulo ¢). Kindly refer Learning with errors: Encrypting with
unsolvable equations to better imagine the LWE problem, and refer Python

7

https://www.youtube.com/watch?v=K026C5YaB3A
https://www.youtube.com/watch?v=K026C5YaB3A
https://www.youtube.com/watch?v=eBF-Vnb7KiY
https://www.youtube.com/watch?v=eBF-Vnb7KiY

#Public & Secret Key generation

[4,1,11,10] #value based on M=8 (N=4)
[6,9,11,11] #value based on M=8 (N=4)

A
s
e =[0,-1,1,1] #value based on M=8 (N=4)

n=len(A)
q=8192

print (A,s,e)
XN_1 = [1] + [@] * (n-1) + [1] #value based on M=8 (N=4) so : X~4+1

print (xN_1)

A = np.floor(np.polydiv(A,xN_1)[1])
#constructing b (the public key)

b = np.polymul(-A,s)

b = np.floor(np.polydiv(b,xN_1)[1])
b= np.polyadd(b,e)

b = np.floor(np.polydiv(b,xN_1)[1]) #taking the remainder of division by cyclotomic polynomial x*4+1

Figure 7: Public and secret key generation hard coded example (in reality A
is created by uniform sampling and e follows a distribution)

and Crypto: Learning With Errors and Ring Learning With Errors in which
prof. Bill Buchanan provides an overview about both LWE and RLWE then
carries on with an example.

° #Encryption

c® = np.polyadd(p.coef, b)

c@ = np.polydiv(c®,xN_1)[1] #taking the remainder of division by cyclotomic polynomial x"4+1
cl=A
print(f"ciphertext polynomials = \nc®: {Polynomial(c@)}\ncl: {Polynomial(cl)}")

4

ciphertext polynomials =
c@: -54.0 - 109.0-x - 28.@-x* + 55.0-x°
cl: 4.6 + 1.0-x + 11.8-x* + 10.0-x*

Figure 8: Encryption of a plain text polynomial p.

https://www.youtube.com/watch?v=eBF-Vnb7KiY
https://www.youtube.com/watch?v=eBF-Vnb7KiY

#Decryption

o]

messagepoly= np.polyadd(c®, np.polydiv(np.polymul(cl,s),xN_1)[1])
print (f"Plaintext polynomial:\n{Polynomial(messagepoly)}")
message = encoder.decode(Polynomial(messagepoly))

print (f"message: {message}")

g

Plaintext polynomial:
160.0 + 89.0-x + 161.0-x* + 46.0-x3
message: [2.97508737+4.00717837j 2.02491263-1.024871637]

Figure 9: Decryption of the ciphertext polynomial then decoding to get the
original message.

5 Optimizations used in CKKS

Although FHE enable very powerful and hard to break encryption (even
for quantum computers), the compute time and resources it requires are
massive. In the following subsections we will review three important compute
optimizations used in CKKS that improve performance.

5.1 Handling of Modular Arithmetic overflow

Cybersecurity schemes rely on using modular math. Hence, the values will
be mod a value Q. addition of two numbers mod Q) can result in a result 1
bit larger than Q. Hence the "mod” needs to be calculated to represent it
as number less than Q. But "mod” operation is computationally expensive
due to its need for division. To avoid that, subtraction of Q from result
happens until a value in range is acquired. for example: to solve 12modb
we first perform 12 — 5 = 7 and perform another iteration 7 — 5 = 2 which
equals 12mod5 = 2. This method is more efficient than carrying divisions. In
case of multiplications, multiplying two values mod Q can result in a value
twice the size of Q plus 1 (in bits) or 2log@ + 1. To perform multiplica-
tions and perform more efficient modular reduction, most people use one
of two techniques called Barrett reduction, and Montgomery multiplication.
Additionally, in cases of multiplying with a constant or known value, most
people implement a technique called Shoup’s technique, which pre computes
an initial value before carrying the multiplication, hence performing the mul-
tiplication with the constant much faster. Quick Note: Despite having the
coefficient modulus @, coefficients should be represented from (—Q/2,Q/2)

9

S
—_
00
e
N
I

np.array([3, 2 1)

ZIN

0
o
1

encoder .encode(z)
p

2> > 160.0+ 220z

: [11] #Encryption
c@ = np.polyadd(p.coef, b)
cB = np.polydiv(c®,xN_1)[1] #taking the remainder of division by cyclotomic polynomial x"4+1

cl=A
print{f"ciphertext polynomials = “nc@: {Polynomial(c@®)}'ncl: {Polynomial{c1}}")}

[

ciphertext polynomials =
c@: -54.8 - 177.8-x - 188.8-x* - 12.8-x7
cl: 4.8 + 1.8-x + 11.8-x* + 18.8-x*

7 [12] #Decryption

messagepoly= np.polyadd{c®, np.polydivi{np.polymul(cl,s), xN_1)[1])
print (f"Plaintext polynomial:‘n{Polynomial(messagepoly)}")
message = encoder.decode(Polynemial (messagepoly))

print (f'message: {message}")

Plaintext polynomial:
168.8 + 21.8-x + 1.8-x% - 21.8-x7
message: [2.96483883+0.915625] 2.83596117-8.8156255]

4

Figure 10: A full Encryption/Decryption example with an integer message
vector (represented by z). A, s & e used are the same from previous example.

instead of (0, Q).

5.2 Residue Number System (RNS)

Residue Number System (RNS) or ”Chinese Remainder Theorem” is a way
that enable use to represent a number as a vector of values that equal the
original value mod a list of prime numbers (this is a loose definition but
sufficient for meantime). For instance, if we have the basis list as [3,7], 14
can be represented as 14mod3 = 2 & 14mod7 = 0 so 14 is represented as
2,0] for basis [3,7]. In real world applications, the polynomial coefficients are
extremely large and require more than 64 bits to represent which is the size
of numbers current computers can handle. To overcome this issue, updated

10

——P{ Polynomial 1 (Mod 3): X5 + 2X3 + XZ}

4#{ Polynomial 2 (Mod 11):6X* + 5X3 + 5X2 + 3}

Original Polynomial (Mod 14421): 682X5+ 501X* + 38X3 - 973X2 + 561X + 300]

\.[Polynomial 3 (Mod 19): 17X5+ 7X* + 4X2 + 10X + 15}
14421 = 3*11%19*23

Polynomial 4 (Mod 23): 15X5+ 18X# + 15X3 - 7X2 + 9X + 1 }

Figure 11: Example of converting a polynomial to its RNS view.

version of CKKS uses RNS to represent these large coefficients as 64 bit basis,
thus each polynomial becomes a vector of polynomials as shown in figure 11.
To learn how to go back from RNS representation to original representation
kindly refer The Chinese Remainder Theorem (Solved Example 1) by Neso
academy.

[1 def RNS_ view(poly, RNS Basis):
matrix = []
for y in RNS_Basis:
row = [x % y for x in poly]
matrix.append(row)
return matrix

Figure 12: Code snippet showing how to convert a polynomial to RNS view.

11

https://www.youtube.com/watch?v=e8DtzQkjOMQ

5.3 Number Theoretic Transform

Number Theoretic transform (NTT) is a variant of Fast Fourier Transform
(FFT). Difference between the two arise from the data they operate on. FFT
operates on complex numbers C while NTT operates on integer rings R, (R
in this context means a ring, not the real numbers R). In case you are not
familiar with FF'T, FFT is a computationally improved way of the Discrete
Fourier Transform (DFT) so it is a method to compute DFT and not a
unique transform itself. But why do we care about FF'T? The answer lies in
the fact that convolutions in time domain can be solved by element wise mul-
tiplication in Frequency domain. Long story short, when operating on the
polynomials to compute functions, we will come across cases where two poly-
nomials need to be multiplied and in reality, multiplying two polynomials is
carried like a convolution (each term in the polynomial gets multiplied by all
terms in the other polynomial similarly to convolution). So here NTT comes
into the picture, polynomials get converted to NT'T representation or what is
called ”evaluation representation” by most resources. Then an element wise
multiplication of occurs to calculate the polynomial multiplication. This re-
duces the complexity of the multiplications from O(N?) to O(NlogN) Still,
the change of data representation from polynomial coefficients representation
to evaluation is compute expensive, hence most resources report that data
will be kept in evaluation representation unless a specific operation requires
using polynomial coefficients representation.

c !pip install galois
import galois

def NTT_transform(poly,mod):
""" Perform the Number Theoretic Transform (NTT) on the input pelynomial. """
return galois.ntt(poly,modulus=mod)

def iNTT_transform(poly,mod):

""" Perform the inverse Number Theoretic Transform (iNTT) on the input polynomial. """
return galois.intt(poly,modulus=mod)

Figure 13: Code snippet showing how to convert to an NTT representation
and its inverse.

12

6 Key Switching

In On Architecting Fully Homomorphic Encryption-based Computing Sys-
tems, the authors describe the CKKS as a group of building blocks (routines)
that build the functionality of CKKS scheme. It is important to note that the
authors describe a later version of CKKS that uses a hybrid key switching
method described in Better Bootstrapping for Approximate Homomorphic
Encryption. This method was later implemented in CKKS libraries but
there are still libraries, codes, tutorials that are based on the original CKKS
implementation so be careful. In this section, I will review the hybrid key
switching method as a concept.

The need for key switch arise from the fact that some operations per-
formed on the ciphertexts change the key that can decrypt the resultant
ciphertext. For instance, When multiplying two ciphertexts, the resultant
ciphertext can only be decrypted by the square of the secret key s2. Because
keeping track of how the secret key should change is difficult especially for
circuits with lots of operations, key switching algorithm was found to re-
store ciphertext decrypt-ability under the original secret key s. The hybrid
key switching method is a n approach that aims to reduce the calculations
complexity while performing the key switching operations.

In the original scheme, to be able to perform key switching with low noise
(error added to ciphertext value), a number P larger than the coefficients
modulus @) is added as extra basis along with modulus) basis for RNS
view. Instead of returning the RNS view of data (vector of polynomials like
figure 11) to regular view then evaluating RNS again for a list of basis of
@, P, A method called the fast base conversion is used to find the original
data representation for these new basis with converting back and forth. In On
Architecting Fully Homomorphic Encryption-based Computing Systems, the
fast base conversion is done in mod wup. Note that this operation happens
before the math operation that will require the key switching (multiplication
for example).

In the hybrid key switching method. The authors introduce a new idea
that allows P to be smaller by decomposing the vector of polynomials that
is the RNS representation of the data into what they call ”digits”. The
decompose operation will "kind of” split every certain number of limbs (con-
trolled by a parameter they call ?’dnum” which controls the number of digits
formed, for dnum = 1 key switching is same as original method). Afterwards,
a temporary moduli P that is only larger than the value of largest digit cre-

13

https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://eprint.iacr.org/2019/688.pdf
https://eprint.iacr.org/2019/688.pdf
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc

ated is found (which is way smaller than the full modulus). Now moving
to perform mod wup operation on the digits, each digit is extended to
have all () and P basis. once that is done, each digit is multiplied by
similar digit of evaluation key (evaluation keys are precomputed and I will
not discuss them here), then results of all multiplications are summed to
form one vector of polynomials that contains RNS polynomials of both @
and P basis. Finally, an operation called mod down is used to remove the
polynomials that correspond to the temporary moduli P basis. Figure 14
summarizes Hybrid key switching.

Decompose | ---- Mod Digits (size L+k each)

Down

N Gray area is the k added

\\ Multiplication with evaluation keys limbs in 1)/[od-Up
| |

Decomposition

! \

—_—

\ ‘ /
/ \ \?< evkg xevk; xevkg_i >/
2-2 /
\ /
oo \ /
. \ ModUp
xQpL, >

Limbs (size L) v\

/
/
/
/
/
/

ModDown

ot o | ModUp’

Digits (size o each) *

ModU;
xQo* o

Figure 14: Hybrid Key Switching high-level Overview. L: number of @
basis, k: number of P basis, a: number of limbs in one digit,3: highest digit
number.

14

Useful Resources

. CKKS explained series: This is the first thing I advice you start with
as it provides a good overview over the fundamentals.

. On Architecting Fully Homomorphic Encryption-based Computing Sys-
tems: This book delivers more in depth understanding of the CKKS
scheme, I advice you go through this after finishing the blog post men-
tioned above. Note: some of the equations mentioned for key switch-
ing in the book have typos and I recommend using the original paper
Better Bootstrapping for Approximate Homomorphic Encryption to
understand the hybrid key switching while having the book as second
helping reference)

. CKKS tutorial by gausslab: This resource was shared recent to the
time I wrote this tutorial at. It provides both a detailed description
of CKKS Encoding, Decoding, Rotation and how to implement SIMD
encoding/decoding.

. Asecurity: Asecurity website by Prof. Bill Buchanan has great content
regarding everything that relates to cybersecurity, page I referenced in
here is not the only page with content on FHE, note that CKKS in this
page is abbreviated as HEAAN which is the original name for CKKS.
Other pages include content on using SEAL and OPENFHE libraries;
feel free to discover it.

. GitHub: My GitHub repository containing two Jupyter Notebooks I
used to test out and implement my understanding of CKKS scheme.
None of these codes is a finalized or completely working code.

15

https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-decoding/
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://link.springer.com/book/10.1007/978-3-031-31754-5#toc
https://eprint.iacr.org/2019/688.pdf
https://github.com/Iyad-Alhasan/ckks-tutorial/tree/main?tab=readme-ov-file
https://asecuritysite.com/homomorphic/
https://github.com/Iyad-Alhasan/FHE_Expirements

	Introduction
	Overview
	Encoding & Decoding
	Encryption
	Optimizations used in CKKS
	Handling of Modular Arithmetic overflow
	Residue Number System (RNS)
	Number Theoretic Transform

	Key Switching
	Useful Resources

