
Tutorial on how to implement and test an adder using PYNQ-Z2 board

Before we start with the tutorial on implementing an adder using a PYNQ board, let’s have a small
recap on FPGA boards.

FPGA, which stands for Field Programmable Gate Array, is an integrated circuit that can be
configured by the designer based on the requirements after manufacturing, in other words, they are
reprogrammable, hence they are called programmable.

They have two main elements – Processing System (PS) and Programmable Logic (PL).

PS is a fixed-function processor subsystem that runs software (OS); PL is the reconfigurable set of
logic blocks that provide custom hardware acceleration.

When working with FPGA, you can interact with it using either of the above-mentioned elements or a
hybrid approach of using both. The PL way is best for real-time, high-speed hardware acceleration.
The PS way is best for software-based tasks and embedded control.

In the case of PYNQ-Z2, the PS is the ARM Cortex-A9 Processors as the board is based on the Xilinx
ZYNQ-7000 series SoC, and the PL is the FPGA fabric consisting of the logic cells, DSP slices, Block
RAM, and configurable I/Os. Both the PS and PL interact with each other using the AXI Interconnect
Interface, leveraging the power of Linux on ARM processors while accelerating algorithms on the PL.

In this tutorial, we will be utilizing the hybrid approach to work on the PYNQ-Z2 FPGA board to
implement and test the adder.

 STEP 1: Initial set up of the PYNQ Z2 board.

The following link provides the necessary steps required to set up the PYNQ Z2 board.

https://pynq.readthedocs.io/en/v2.5/getting_started/pynq_z2_setup.html

STEP 2: Add the PYNQ-Z2 board files to Vivado.

The following link provides the necessary PYNQ-Z2 board files required to work on a project using it
in Vivado.

https://github.com/Xilinx/XilinxBoardStore/tree/master/boards/TUL/pynq-z2/A.0

Download all the files provided in the link, copy, and paste them into a new folder – ‘pynq-z2’ in the
following location: \Xilinx\Vivado\your_version\data\boards.

STEP 3: Create a new Vivado project.

1. Open Vivado.
2. Click on Create Project -> Next.
3. Enter the Project name – adder and set a location, then click on Next.
4. Choose RTL Project -> Next.
5. Select Do not specify sources at this time -> Next.
6. In Part selection, select PYNQ-Z2 board.

https://pynq.readthedocs.io/en/v2.5/getting_started/pynq_z2_setup.html
https://github.com/Xilinx/XilinxBoardStore/tree/master/boards/TUL/pynq-z2/A.0

STEP 4: Create an adder module in Verilog.

1. In Vivado, go to the Flow Navigator -> Add Sources -> Add or Create design sources ->
Create File.

2. Select the File type: Verilog, provide the File name: adder.v , the File location: default
option - < Local to Project> and click Finish.

3. Write the Verilog code for a simple 4-bit adder, which has two 4-bit input and a 5-bit
output. Fig 1, provides the code.

Fig 1. Verilog file of the adder module

STEP 5: Create a testbench (Optional)

1. For simulation purposes, you can create a testbench to verify the adder. Go to the Flow
Navigator -> Add Sources -> Add or Create Simulation Sources -> Create File.

2. Select the File type: Verilog, provide the File name: adder_tb.v, File location: default
opion - <Local to Project> and click Finish.

3. Write the Verilog testbench code for a simple 4-bit adder. Fig 2 provides the code.

Fig 2. Verilog testbench file of the adder

STEP 6: Create a Block Design

1. Go to the Flow Navigator -> IP Integrator and click on Create Block Design, name the block
design as adder_design, and click OK.

2. Add the following blocks:
• Adder module: Right-click on the Block Design Window and choose Add Module.
• AXI GPIO Blocks (3 instances): Click on ADD IP and search for AXI GPIO. Use one

AXI GPIO block for each input/output port (a, b, and sum).
• ZYNQ7 Processing System: Click on ADD IP and search for ZYNQ7 Processing

System.
3. Connect components:

• Configure the ZYNQ Processing System to enable AXI GPIO interfaces. Click on Run
Block Automation. This will connect the clocks and resets to the ZYNQ PS
automatically.

• Configure the AXI GPIO blocks by setting the GPIO Width to 4 for a and b and the
GPIO Width to 5 for the sum.

• Connect the output of ‘a’ GPIO block to ‘a’ input port of the adder module. Similarly,
connect the output of the ‘b’ GPIO block to the ‘b’ input port of the adder module.

• Connect the input of the ‘sum’ GPIO block to the 'sum’ port of the adder module.
• Connect each S_AXI port of an AXI GPIO block (e.g. for a) to the M_AXI_GP0 (or

similar) port on the ZYNQ PS.

STEP 7: Validate, generate the Block Design, and create HDL wrapper.

1. Once all connections are made, click Tools -> Validate Design to ensure there are no errors
in the block design.

2. If validation is successful, save the block design.

3. Right-click ‘adder’ in your source tab and then select Create HDL Wrapper -> Let Vivado
manage wrapper and auto-update. Click OK.

This setup creates a system where:

• The ARM processor can write to the ‘a’ and ‘b’ AXI GPIO blocks to control the inputs.

• The result (sum) can be read through the ‘sum’ AXI GPIO block.

Fig.3 Block Design

STEP 8: Generate a Bitstream

1. Synthesize the design -> click on Run Synthesis -> OK.
2. Implement the design -> click on Run Implementation -> OK.
3. Generate the bitstream -> click on Generate Bitstream -> OK.

As of now, we are done with working on the board using the PL way – generating the overlay files by
Vivado in the form of a bitstream file. Overlay files are the essential hardware libraries that will
leverage the power of FPGA.

STEP 9: Testing the adder using PYNQ Jupyter Notebook

Now, we will start working on the board using the PS way by running a Python script to send data to
the adder’s input and read back the output using the AXI GPIO interface. Juypter Notebook is a server
that runs on Linux. By using your PC, you can connect to the device using the Juypter Notebook
server. In this way, you can run commands on the PYNQ processor remotely.

1. Connect the PYNQ-Z2 board to your PC via Micro-USB.
2. Use the following link to connect to the Juypter Notebook on the board.

https://pynq.readthedocs.io/en/v2.5/getting_started.html#connecting-to-jupyter-notebook

https://pynq.readthedocs.io/en/v2.5/getting_started.html#connecting-to-jupyter-notebook

3. Create a new folder by pressing New -> Folder. A folder called ‘Untitled Folder’ will appear.
Select the empty checkbox and click Rename. You can call this folder whatever you want,
e.g. ‘adder’. After Renaming, Click on ‘adder’.

4. Export the design as an overlay to the Jupyter Notebook: This can be done by uploading the
bitstream files of the adder to the same folder in the Jupyter Notebook where you will create
the Python file. Remember that bitstreams require an associated .tcl or .hwh file that
provides metadata about the hardware design (pins, interfaces, memory mappings) in
addition to the .bit file. Make sure the .hwh file with the same base name as your bitstream
file is in the same directory. For instance, if your bitstream is adder.bit, you should also have
adder.hwh in the same folder. You can find .bit and .tcl files in the location where you had
created your Vivado project: \project_name\project_name.runs and the .hwh file:
\project_name\project_name.gen\sources_1\bd\project_design. Shows the bitstream
files stored in the same folder as the python file.

Fig 4. Uploaded bitstream files in the Jupyter Notebook

5. Now, we will create the Python file to test the adder. Click on New -> Python. Rename the

notebook by clicking the ‘Untitled’ label and call it ‘adder’. After Renaming, Click on ‘adder’.
6. You can write a part of the Python code and just execute that code. Click on Insert on the

menu and choose Insert Cell Above or Below, depending upon your need. You can execute
the code on each cell by pressing Shift + Enter.

7. Fig. 5 provides the Python code to test the 4-bit adder design. It can be drawn from the figure
that when providing different inputs, the desired outputs are displayed. Hence, we can
conclude that we were able to test a 4-bit adder using the PYNQ-Z2 board.

Fig. 5 Adder Python code

You can also try to project the outcome of the adder by utilizing 7-segment displays. This can be done
by connecting the 7-segment displays to the Pmod ports of the PYNQ-Z2 board. PYNQ-Z2 has two
PMOD ports – A and B available for general-purpose I/O. The procedure to implement this is similar
to how we designed and tested the adder using the PYNQ-Z2 board with a few modifications.

The following provides the necessary steps required,

STEP 1: Create a new Vivado project – adder_7seg_display

STEP 2: Create the required Verilog modules.

1. We will be utilizing two 7-segment displays to project the outcome of the adder; one will
display the ten's value of the sum, and the other will display the one’s value of the sum.
Therefore, we need to create a binary to BCD converter Verilog module. Fig. 6 Provides the
code.

Fig. 6 Verilog code of the binary to BCD converter

2. To connect to the 7-segment display, a seven-segment decoder Verilog module is also
required. Fig. 7 Provides the code.

Fig .7 Verilog code of the seven-segment decoder

3. Add the previously created adder module to the Design sources.

STEP 3: Create a Block Design

1. Go to the Flow Navigator -> IP Integrator and click on Create Block Design, name the block
design as adder_7seg_design, and click OK.

2. Add the following blocks:
• Adder module: Right-click on the Block Design Window and choose Add Module.
• Binary-to-BCD module: Right-click on the Block Design Window and choose Add

Module.
• Seven-segment decoder module (2 instances): Right-click on the Block Design

Window and choose Add Module. Use one seven-segment decoder block for each
one’s and ten’s digits.

• AXI GPIO Blocks (2 instances): Click on ADD IP and search for AXI GPIO. Use one
AXI GPIO block for each input port (a, b).

• ZYNQ7 Processing System: Click on ADD IP and search for ZYNQ7 Processing
System.

3. Connect components:
• Configure the ZYNQ Processing System to enable AXI GPIO interfaces. Click on Run

Block Automation. This will connect the clocks and resets to the ZYNQ PS
automatically.

• Configure the AXI GPIO blocks by setting the GPIO Width to 4 for a and b.
• Connect each S_AXI port of an AXI GPIO block (e.g. for a) to the M_AXI_GP0 (or

similar) port on the ZYNQ PS.
• AXI GPIO: Connect the AXI GPIO blocks to the ZYNQ Processing System through the

AXI interface. Use the GPIO ports to drive the a and b inputs of the adder.
• Adder Module: Connect the ‘a’ and ‘b’ inputs of the adder to the GPIO outputs.

Connect the ‘sum’ output to the input of the binary-to-BCD converter.
• Seven-Segment Decoders: Connect the ten’s and one’s outputs from the binary-to-

BCD converter to the two decoder blocks. Export the ‘seg_tens’ and ‘seg_ones’
outputs to PMOD pins. To do so, right-click on the outputs of the binary-to-BCD
converter and choose Make External.

STEP 4: Validate, generate the block design, and create HDL wrapper.

Fig.8 Block Design

STEP 5: Create the constraint file.

1. A constraint will have the port name from your design and the FPGA pin name.
2. Each 7-segment display requires seven pins, which are provided by the output of the seven-

segment decoder. Assign these signals to PMOD pins using the constraint file (.xdc file).
3. Go to the Flow Navigator -> Add Sources -> Add or create constraints -> Create File.

Provide File name: adder_top; File type and File location are the default options – XDC and
<Local to Project>.

4. You can refer to the following link for the reference XDC file of the PYNQ-Z2 board to get the
pin configuration of the Pmod ports.

https://github.com/Xilinx/PYNQ/blob/master/boards/Pynq-
Z2/base/vivado/constraints/base.xdc

Fig. 9 Constraint file

STEP 6: Run Synthesis, Run Implementation, and Generate Bitstream.

STEP 7: Testing using PYNQ Jupyter Notebook

1. Connect the PYNQ-Z2 board to your PC via Micro-USB.
2. Connect the Pmod ports of the PYNQ-Z2 board to the inputs of the 7-segment display.
3. Create a new folder – adder_7seg. Export the design as an overlay to the adder_7seg folder

of the Jupyter Notebook.
4. Now, create the Python file to test the adder. Fig. 10 provides the Python code to test the 4-

bit adder design.

https://github.com/Xilinx/PYNQ/blob/master/boards/Pynq-Z2/base/vivado/constraints/base.xdc
https://github.com/Xilinx/PYNQ/blob/master/boards/Pynq-Z2/base/vivado/constraints/base.xdc

Fig. 10 Python code

Outcome:

On running the Python code, the desired output of the 4-bit adder will be displayed in the seven-
segment display. From Fig. 10 and Fig. 11, it can be inferred that on providing inputs ‘a’: 15 and ‘b’:
5, the desired output: 20 is displayed; 2 - the ten’s value of the sum is displayed on the top 7-
segment display and 0 - the one’s value of the sum is displayed on the bottom 7-segment display.
Hence, we can conclude that we were able to test a 4-bit adder using the PYNQ-Z2 board and project
the outcome to 7-segment displays.

Fig. 11 Output of the 4-bit adder

